135 research outputs found

    Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status.

    Get PDF
    We evaluated homologous recombination deficient (HRD) phenotypes in epithelial ovarian cancer (EOC) considering BRCA1, BRCA2, and RAD51C in a large well-annotated patient set. We evaluated EOC patients for germline deleterious mutations (n = 899), somatic mutations (n = 279) and epigenetic alterations (n = 482) in these genes using NGS and genome-wide methylation arrays. Deleterious germline mutations were identified in 32 (3.6%) patients for BRCA1, in 28 (3.1%) for BRCA2 and in 26 (2.9%) for RAD51C. Ten somatically sequenced patients had deleterious alterations, six (2.1%) in BRCA1 and four (1.4%) in BRCA2. Fifty two patients (10.8%) had methylated BRCA1 or RAD51C. HRD patients with germline or somatic alterations in any gene were more likely to be high grade serous, have an earlier diagnosis age and have ovarian and/or breast cancer family history. The HRD phenotype was most common in high grade serous EOC. Identification of EOC patients with an HRD phenotype may help tailor specific therapies.This work was supported by National Institutes of Health grants R01-CA122443, P50-CA136393, P30-CA15083, and the Fred C. and Katherine B. Andersen Foundation. We thank Gary Kenney, M.D. for pathology review of tumor tissue. We thank Craig Luccarini, Caroline Baynes from University of Cambridge for assisting our sample sequencing

    FMNL2 drives actin-based protrusion and migration downstream of Cdc42.

    Get PDF
    Cell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE. It is unclear whether formins contribute to lamellipodial actin filament nucleation or serve as elongators of filaments nucleated by Arp2/3 complex. Here we show that the Diaphanous-related formin FMNL2, also known as FRL3 or FHOD2, accumulates at lamellipodia and filopodia tips. FMNL2 is cotranslationally modified by myristoylation and regulated by interaction with the Rho-guanosine triphosphatase Cdc42. Abolition of myristoylation or Cdc42 binding interferes with proper FMNL2 activation, constituting an essential prerequisite for subcellular targeting. In vitro, C-terminal FMNL2 drives elongation rather than nucleation of actin filaments in the presence of profilin. In addition, filament ends generated by Arp2/3-mediated branching are captured and efficiently elongated by the formin. Consistent with these biochemical properties, RNAi-mediated silencing of FMNL2 expression decreases the rate of lamellipodia protrusion and, accordingly, the efficiency of cell migration. Our data establish that the FMNL subfamily member FMNL2 is a novel elongation factor of actin filaments that constitutes the first Cdc42 effector promoting cell migration and actin polymerization at the tips of lamellipodia

    Fine-mapping of the HNF1B multicancer locus identifies candidate variants that mediate endometrial cancer risk.

    Get PDF
    Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 Γ— 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression

    Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins

    Get PDF
    The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forAβˆ’/Eβˆ’/Hβˆ’ and racEβˆ’ mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics

    HER2 gene amplification and EGFR expression in a large cohort of surgically staged patients with nonendometrioid (type II) endometrial cancer

    Get PDF
    Type II endometrial cancers (uterine serous papillary and clear cell histologies) represent rare but highly aggressive variants of endometrial cancer (EC). HER2 and EGFR may be differentially expressed in type II EC. Here, we evaluate the clinical role of HER2 and EGFR in a large cohort of surgically staged patients with type II (nonendometrioid) EC and compare the findings with those seen in a representative cohort of type I (endometrioid) EC. In this study HER2 gene amplification was studied by fluorescence in situ hybridisation (FISH) and EGFR expression by immunohistochemistry. Tissue microarrays were constructed from 279 patients with EC (145 patients with type I and 134 patients with type II EC). All patients were completely surgically staged and long-term clinical follow up was available for 258 patients. The rate of HER2 gene amplification was significantly higher in type II EC compared with type I EC (17 vs 1%, P<0.001). HER2 gene amplification was detected in 17 and 16% of the cases with uterine serous papillary and clear cell type histology, respectively. In contrast, EGFR expression was significantly lower in type II compared with type I EC (34 vs 46%, P=0.041). EGFR expression but not HER2 gene amplification was significantly associated with poor overall survival in patients with type II EC, (EGFR, median survival 20 vs 33 months, P=0.028; HER2, median survival 18 vs 29 months, P=0.113) and EGFR expression retained prognostic independence when adjusting for histology, stage, grade, and age (EGFR, P=0.0197; HER2, P=0.7855). We conclude that assessment of HER2 gene amplification and/or EGFR expression may help to select type II EC patients who could benefit from therapeutic strategies targeting both HER2 and EGFR

    Inherited variants in regulatory T cell genes and outcome of ovarian cancer.

    Get PDF
    Although ovarian cancer is the most lethal of gynecologic malignancies, wide variation in outcome following conventional therapy continues to exist. The presence of tumor-infiltrating regulatory T cells (Tregs) has a role in outcome of this disease, and a growing body of data supports the existence of inherited prognostic factors. However, the role of inherited variants in genes encoding Treg-related immune molecules has not been fully explored. We analyzed expression quantitative trait loci (eQTL) and sequence-based tagging single nucleotide polymorphisms (tagSNPs) for 54 genes associated with Tregs in 3,662 invasive ovarian cancer cases. With adjustment for known prognostic factors, suggestive results were observed among rarer histological subtypes; poorer survival was associated with minor alleles at SNPs in RGS1 (clear cell, rs10921202, pβ€Š=β€Š2.7Γ—10(-5)), LRRC32 and TNFRSF18/TNFRSF4 (mucinous, rs3781699, pβ€Š=β€Š4.5Γ—10(-4), and rs3753348, pβ€Š=β€Š9.0Γ—10(-4), respectively), and CD80 (endometrioid, rs13071247, pβ€Š=β€Š8.0Γ—10(-4)). Fo0r the latter, correlative data support a CD80 rs13071247 genotype association with CD80 tumor RNA expression (pβ€Š=β€Š0.006). An additional eQTL SNP in CD80 was associated with shorter survival (rs7804190, pβ€Š=β€Š8.1Γ—10(-4)) among all cases combined. As the products of these genes are known to affect induction, trafficking, or immunosuppressive function of Tregs, these results suggest the need for follow-up phenotypic studies
    • …
    corecore