1,298 research outputs found

    Examining virtual driving test performance and its relationship to individuals with HIV-associated neurocognitive disorders

    Get PDF
    SIGNIFICANCE: Existing screening tools for HIV-associated neurocognitive disorders (HAND) are often clinically impractical for detecting milder forms of impairment. The formal diagnosis of HAND requires an assessment of both cognition and impairment in activities of daily living (ADL). To address the critical need for identifying patients who may have disability associated with HAND, we implemented a low-cost screening tool, the Virtual Driving Test (VDT) platform, in a vulnerable cohort of people with HIV (PWH). The VDT presents an opportunity to cost-effectively screen for milder forms of impairment while providing practical guidance for a cognitively demanding ADL. OBJECTIVES: We aimed to: (1) evaluate whether VDT performance variables were associated with a HAND diagnosis and if so; (2) systematically identify a manageable subset of variables for use in a future screening model for HAND. As a secondary objective, we examined the relative associations of identified variables with impairment within the individual domains used to diagnose HAND. METHODS: In a cross-sectional design, 62 PWH were recruited from an established HIV cohort and completed a comprehensive neuropsychological assessment (CNPA), followed by a self-directed VDT. Dichotomized diagnoses of HAND-specific impairment and impairment within each of the seven CNPA domains were ascertained. A systematic variable selection process was used to reduce the large amount of VDT data generated, to a smaller subset of VDT variables, estimated to be associated with HAND. In addition, we examined associations between the identified variables and impairment within each of the CNPA domains. RESULTS: More than half of the participants ( CONCLUSION: We identified a subset of VDT performance variables that are associated with HAND and assess relevant functional abilities among individuals with HAND. Additional research is required to develop and validate a predictive HAND screening model incorporating this subset

    Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes

    Get PDF
    Genome-wide experimental methods to identify disease genes, such as linkage analysis and association studies, generate increasingly large candidate gene sets for which comprehensive empirical analysis is impractical. Computational methods employ data from a variety of sources to identify the most likely candidate disease genes from these gene sets. Here, we review seven independent computational disease gene prioritization methods, and then apply them in concert to the analysis of 9556 positional candidate genes for type 2 diabetes (T2D) and the related trait obesity. We generate and analyse a list of nine primary candidate genes for T2D genes and five for obesity. Two genes, LPL and BCKDHA, are common to these two sets. We also present a set of secondary candidates for T2D (94 genes) and for obesity (116 genes) with 58 genes in common to both diseases

    Frequent Community Use of Antibiotics among a Low-Economic Status Population in Manila, the Philippines: A Prospective Assessment Using a Urine Antibiotic Bioassay

    Get PDF
    The widespread unregulated use of antibiotics without medical consultation contributes to the burden of antibiotic resistance in Southeast Asian countries. This study investigated antibiotic use before hospital consultation. In aprospective observational study from February 2, 2015, to July 2, 2015, we enrolled febrile patients attending theemergency room in San Lazaro Hospital, Manila, the Philippines.Aurine sample was collected and a bioassay was used todetect antibiotic activity in urine using Bacillus stearothermophilus (ATCC7953), Escherichia coli (ATCC25922), andStreptococcus pyogenes (ATCC19615). Patients or caregivers reported their medication history, clinical information, andsocioeconomic status. During the study period, 410 patients were enrolled. The median (interquartile range) age was 14(7?23) years and 158 (39%) reported prior antibiotic use, predominantly a beta-lactam antibiotic. A total of 164 (40%,95%confidence interval [CI]: 35?45) patients were urine bioassay positive with any of three organisms. The Bacillus assay wasthe most sensitive, detecting 162 (99%, 95%CI: 96?100) cases. Among bioassay positive patients, dengue (N= 91, 55%,95% CI: 48?63) was the most frequent diagnosis, followed by other viral infections, including measles, rubella, and mumps (N= 17, 10%,95%CI: 6?16). Patients with a positive bioassay were significantly more likely to be from the lowestincome group (adjusted odds ratio [AOR]: 1.7; 95% CI: 1.1?2.6) and required hospital admission (AOR: 2.1; 95% CI:1.3?3.5). Unnecessary antibiotic use for febrile illnesses before hospital consultation is common in a low-income, highly populated urban community in Manila. Education targeting this group should be implemented to reduce unnecessaryantibiotic use

    A Novel and Critical Role for Oct4 as a Regulator of the Maternal-Embryonic Transition

    Get PDF
    Compared to the emerging embryonic stem cell (ESC) gene network, little is known about the dynamic gene network that directs reprogramming in the early embryo. We hypothesized that Oct4, an ESC pluripotency regulator that is also highly expressed at the 1- to 2-cell stages in embryos, may be a critical regulator of the earliest gene network in the embryo.Using antisense morpholino oligonucleotide (MO)-mediated gene knockdown, we show that Oct4 is required for development prior to the blastocyst stage. Specifically, Oct4 has a novel and critical role in regulating genes that encode transcriptional and post-transcriptional regulators as early as the 2-cell stage. Our data suggest that the key function of Oct4 may be to switch the developmental program from one that is predominantly regulated by post-transcriptional control to one that depends on the transcriptional network. Further, we propose to rank candidate genes quantitatively based on the inter-embryo variation in their differential expression in response to Oct4 knockdown. Of over 30 genes analyzed according to this proposed paradigm, Rest and Mta2, both of which have established pluripotency functions in ESCs, were found to be the most tightly regulated by Oct4 at the 2-cell stage.We show that the Oct4-regulated gene set at the 1- to 2-cell stages of early embryo development is large and distinct from its established network in ESCs. Further, our experimental approach can be applied to dissect the gene regulatory network of Oct4 and other pluripotency regulators to deconstruct the dynamic developmental program in the early embryo

    A strategy for constructing aneuploid yeast strains by transient nondisjunction of a target chromosome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most methods for constructing aneuploid yeast strains that have gained a specific chromosome rely on spontaneous failures of cell division fidelity. In <it>Saccharomyces cerevisiae</it>, extra chromosomes can be obtained when errors in meiosis or mitosis lead to nondisjunction, or when nuclear breakdown occurs in heterokaryons. We describe a strategy for constructing N+1 disomes that does not require such spontaneous failures. The method combines two well-characterized genetic tools: a conditional centromere that transiently blocks disjunction of one specific chromosome, and a duplication marker assay that identifies disomes among daughter cells. To test the strategy, we targeted chromosomes III, IV, and VI for duplication.</p> <p>Results</p> <p>The centromere of each chromosome was replaced by a centromere that can be blocked by growth in galactose, and <it>ura3::HIS3</it>, a duplication marker. Transient exposure to galactose induced the appearance of colonies carrying duplicated markers for chromosomes III or IV, but not VI. Microarray-based comparative genomic hybridization (CGH) confirmed that disomic strains carrying extra chromosome III or IV were generated. Chromosome VI contains several genes that are known to be deleterious when overexpressed, including the beta-tubulin gene <it>TUB2</it>. To test whether a tubulin stoichiometry imbalance is necessary for the apparent lethality caused by an extra chromosome VI, we supplied the parent strain with extra copies of the alpha-tubulin gene <it>TUB1</it>, then induced nondisjunction. Galactose-dependent chromosome VI disomes were produced, as revealed by CGH. Some chromosome VI disomes also carried extra, unselected copies of additional chromosomes.</p> <p>Conclusion</p> <p>This method causes efficient nondisjunction of a targeted chromosome and allows resulting disomic cells to be identified and maintained. We used the method to test the role of tubulin imbalance in the apparent lethality of disomic chromosome VI. Our results indicate that a tubulin imbalance is necessary for disomic VI lethality, but it may not be the only dosage-dependent effect.</p

    Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling

    Get PDF
    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division

    AMI-LA radio continuum observations of Spitzer c2d small clouds and cores: Serpens region

    Get PDF
    We present deep radio continuum observations of the cores identified as deeply embedded young stellar objects in the Serpens molecular cloud by the Spitzer c2d programme at a wavelength of 1.8cm with the Arcminute Microkelvin Imager Large Array (AMI-LA). These observations have a resolution of ~30arcsec and an average sensitivity of 19microJy/beam. The targets are predominantly Class I sources, and we find the detection rate for Class I objects in this sample to be low (18%) compared to that of Class 0 objects (67%), consistent with previous works. For detected objects we examine correlations of radio luminosity with bolometric luminosity and envelope mass and find that these data support correlations found by previous samples, but do not show any indiction of the evolutionary divide hinted at by similar data from the Perseus molecular cloud when comparing radio luminosity with envelope mass. We conclude that envelope mass provides a better indicator for radio luminosity than bolometric luminosity, based on the distribution of deviations from the two correlations. Combining these new data with archival 3.6cm flux densities we also examine the spectral indices of these objects and find an average spectral index of 0.53+/-1.14, consistent with the canonical value for a partially optically thick spherical or collimated stellar wind. However, we caution that possible inter-epoch variability limits the usefulness of this value, and such variability is supported by our identification of a possible flare in the radio history of Serpens SMM 1.Comment: accepted MNRA

    The United States of America and Scientific Research

    Get PDF
    To gauge the current commitment to scientific research in the United States of America (US), we compared federal research funding (FRF) with the US gross domestic product (GDP) and industry research spending during the past six decades. In order to address the recent globalization of scientific research, we also focused on four key indicators of research activities: research and development (R&D) funding, total science and engineering doctoral degrees, patents, and scientific publications. We compared these indicators across three major population and economic regions: the US, the European Union (EU) and the People's Republic of China (China) over the past decade. We discovered a number of interesting trends with direct relevance for science policy. The level of US FRF has varied between 0.2% and 0.6% of the GDP during the last six decades. Since the 1960s, the US FRF contribution has fallen from twice that of industrial research funding to roughly equal. Also, in the last two decades, the portion of the US government R&D spending devoted to research has increased. Although well below the US and the EU in overall funding, the current growth rate for R&D funding in China greatly exceeds that of both. Finally, the EU currently produces more science and engineering doctoral graduates and scientific publications than the US in absolute terms, but not per capita. This study's aim is to facilitate a serious discussion of key questions by the research community and federal policy makers. In particular, our results raise two questions with respect to: a) the increasing globalization of science: “What role is the US playing now, and what role will it play in the future of international science?”; and b) the ability to produce beneficial innovations for society: “How will the US continue to foster its strengths?

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore