373 research outputs found

    Josephson Coupling in the Dissipative State of a Thermally Hysteretic μ\mu-SQUID

    Full text link
    Micron-sized superconducting interference devices (μ\mu-SQUIDs) based on constrictions optimized for minimizing thermal runaway are shown to exhibit voltage oscillations with applied magnetic flux despite their hysteretic behavior. We explain this remarkable feature by a significant supercurrent contribution surviving deep into the resistive state, due to efficient heat evacuation. A resistively shunted junction model, complemented by a thermal balance determining the amplitude of the critical current, describes well all experimental observations, including the flux modulation of the (dynamic) retrapping current and voltage by introducing a single dimensionless parameter. Thus hysteretic μ\mu-SQUIDs can be operated in the voltage read-out mode with a faster response. The quantitative modeling of this regime incorporating both heating and phase dynamics paves the way for further optimization of μ\mu-SQUIDs for nano-magnetism.Comment: 10 pages, 11 figures, Revise

    Proposal for detecting the π\pi-shifted Cooper quartet supercurrent

    Full text link
    The multiterminal Josephson effect aroused considerable interest recently, in connection with theoretical and experimental evidence for correlations among Cooper pairs, that is, the so-called Cooper quartets. It was further predicted that the spectrum of Andreev bound states in such devices could host Weyl-point singularities. However, the relative phase between the Cooper pair and quartet supercurrents has not yet been addressed experimentally. Here, we propose an experiment involving four-terminal Josephson junctions with two independent orthogonal supercurrents, and calculate the critical current contours (CCCs) from a multiterminal Josephson junction circuit theory. We predict a generically π\pi-shifted contribution of both the local or nonlocal second-order Josephson harmonics. Furthermore, we show that these lead to marked nonconvex shapes for the CCCs in zero magnetic field, where the dissipative state reenters into the superconducting one. Eventually, we discuss distinctive features of the non-local Josephson processes in the CCCs. The experimental observation of the latter could allow providing firm evidence of the π\pi-shifted Cooper quartet current-phase relation.Comment: Third revision: manuscript in final for

    Etching suspended superconducting hybrid junctions from a multilayer

    Full text link
    A novel method to fabricate large-area superconducting hybrid tunnel junctions with a suspended central normal metal part is presented. The samples are fabricated by combining photo-lithography and chemical etch of a superconductor - insulator - normal metal multilayer. The process involves few fabrication steps, is reliable and produces extremely high-quality tunnel junctions. Under an appropriate voltage bias, a significant electronic cooling is demonstrated

    Stochastic resonance in thermally bistable Josephson weak-links and micro-SQUIDs

    Full text link
    Constriction-based Josephson weak-links display a thermal bi-stability between two states exhibiting zero and finite voltages. This manifests in experiments either as hysteresis in weak-links current voltage characteristics or as random telegraphic signal in voltage. In the latter case, a noise-driven amplification of a sinusoidal excitation of the device is observed, at frequencies matching the characteristic switching frequency in telegraphic signal, a phenomenon known as stochastic resonance. The observed behavior is understood using a two-state model of stochastic resonance and is exploited to illustrate an enhanced signal-to-noise-ratio in a micro-SQUID as a magnetic field sensor.Comment: 23 pages, 7 figures, suppl. info. available on reques

    Interplay of Andreev reflection and Coulomb blockade in hybrid superconducting single electron transistors

    Full text link
    We study the interplay between Coulomb blockade and superconductivity in a tunable superconductor-superconductor-normal metal single-electron transistor. The device is realized by connecting the superconducting island via an oxide barrier to the normal metal lead and with a break junction to the superconducting lead. The latter enables Cooper pair transport and (multiple) Andreev reflection. We show that those processes are relevant also far above the superconducting gap and that signatures of Coulomb blockade may reoccur at high bias while they are absent for small bias in the strong-coupling regime. Our experimental findings agree with simulations using a master equation approach in combination with the full counting statistics of multiple Andreev reflection.Comment: Manuscript only, supplement available upon reques

    Photon-assisted tunneling at the atomic scale: Probing resonant Andreev reflections from Yu-Shiba-Rusinov states

    Full text link
    Tunneling across superconducting junctions proceeds by a rich variety of processes, which transfer single electrons, Cooper pairs, or even larger numbers of electrons by multiple Andreev reflections. Photon-assisted tunneling combined with the venerable Tien-Gordon model has long been a powerful tool to identify tunneling processes between superconductors. Here, we probe superconducting tunnel junctions including an impurity-induced Yu-Shiba-Rusinov (YSR) state by exposing a scanning tunneling microscope with a superconducting tip to microwave radiation. We find that a simple Tien-Gordon description describes tunneling of single electrons and Cooper pairs into the bare substrate, but breaks down for tunneling via YSR states by resonant Andreev reflections. We develop an improved theoretical description which is in excellent agreement with the data. Our results establish photon-assisted tunneling as a powerful tool to analyze tunneling processes at the atomic scale which should be particularly informative for unconventional and topological superconductors

    Diode effect in Josephson junctions with a single magnetic atom

    Full text link
    Current flow in electronic devices can be asymmetric with bias direction, a phenomenon underlying the utility of diodes and known as non-reciprocal charge transport. The promise of dissipationless electronics has recently stimulated the quest for superconducting diodes, and non-reciprocal superconducting devices have been realized in various non-centrosymmetric systems. Probing the ultimate limits of miniaturization, we have created atomic-scale Pb--Pb Josephson junctions in a scanning tunneling microscope. Pristine junctions stabilized by a single Pb atom exhibit hysteretic behavior, confirming the high quality of the junctions, but no asymmetry between the bias directions. Non-reciprocal supercurrents emerge when inserting a single magnetic atom into the junction, with the preferred direction depending on the atomic species. Aided by theoretical modelling, we trace the non-reciprocity to quasiparticle currents flowing via Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Our results open new avenues for creating atomic-scale Josephson diodes and tuning their properties through single-atom manipulation

    Diode effect in Josephson junctions with a single magnetic atom

    Get PDF
    Current flow in electronic devices can be asymmetric with bias direction, a phenomenon underlying the utility of diodes1 and known as non-reciprocal charge transport2. The promise of dissipationless electronics has recently stimulated the quest for superconducting diodes, and non-reciprocal superconducting devices have been realized in various non-centrosymmetric systems3,4,5,6,7,8,9,10. Here we investigate the ultimate limits of miniaturization by creating atomic-scale Pb–Pb Josephson junctions in a scanning tunnelling microscope. Pristine junctions stabilized by a single Pb atom exhibit hysteretic behaviour, confirming the high quality of the junctions, but no asymmetry between the bias directions. Non-reciprocal supercurrents emerge when inserting a single magnetic atom into the junction, with the preferred direction depending on the atomic species. Aided by theoretical modelling, we trace the non-reciprocity to quasiparticle currents flowing by means of electron–hole asymmetric Yu–Shiba–Rusinov states inside the superconducting energy gap and identify a new mechanism for diode behaviour in Josephson junctions. Our results open new avenues for creating atomic-scale Josephson diodes and tuning their properties through single-atom manipulation

    Superconductivity in a single C60 transistor

    Full text link
    Single molecule transistors (SMTs) are currently attracting enormous attention as possible quantum information processing devices. An intrinsic limitation to the prospects of these however is associated to the presence of a small number of quantized conductance channels, each channel having a high access resistance of at best RK/2=h/2e2R_{K}/2=h/2e^{2}=12.9 kΩ\Omega. When the contacting leads become superconducting, these correlations can extend throughout the whole system by the proximity effect. This not only lifts the resistive limitation of normal state contacts, but further paves a new way to probe electron transport through a single molecule. In this work, we demonstrate the realization of superconducting SMTs involving a single C60 fullerene molecule. The last few years have seen gate-controlled Josephson supercurrents induced in the family of low dimensional carbon structures such as flakes of two-dimensional graphene and portions of one-dimensional carbon nanotubes. The present study involving a full zero-dimensionnal fullerene completes the picture.Comment: 12 pages, 3 figure

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured
    corecore