157 research outputs found

    The Stellar Phase Density of the Local Universe and its Implications for Galaxy Evolution

    Full text link
    This paper introduces the idea that the general mixing inequality obeyed by evolving stellar phase densities may place useful constraints on the possible history of the over-all galaxy population. We construct simple models for the full stellar phase space distributions of galaxies' disk and spheroidal components, and reproduce the well-known result that the maximum phase density of an elliptical galaxy is too high to be produced collisionlessly from a disk system, although we also show that the inclusion of a bulge component in the disk removes this evolutionary impediment. In order to draw more general conclusions about the evolution of the galaxy population, we use the Millennium Galaxy Catalogue to construct a model of the entire phase density distribution of stars in a representative sample of the local Universe. In such a composite population, we show that the mixing inequality rules out some evolutionary paths that are not prohibited by consideration of the maximum phase density alone, and thus show that the massive ellipticals in this population could not have formed purely from collisionless mergers of a low mass galaxy population like that found in the local Universe. Although the violation of the mixing inequality is in this case quite minor, and hence avoidable with a modest amount of non-collisionless star formation in the merger process, it does confirm the potential of this approach. The future measurement of stellar phase densities at higher redshift will allow this potential to be fully exploited, offering a new way to look at the possible pathways for galaxy evolution, and to learn about the environment of star formation through the way that this phase space becomes populated over time.Comment: 6 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    The visible environment of galaxies with counterrotation

    Get PDF
    In this paper we present a statistical study of the environments of 49 galaxies in which there is gas- or stellar- counterrotation. The number of possible companions in the field (to apparent magnitude 22), their size and concentration were considered. All the statistical parameters were analysed by means of Kolgomorov-Smirnov tests, using a control sample of 43 galaxies without counterrotation. From our data, no significant differences between the counter-rotating and control samples appear. This is different to Seyfert or radio-loud galaxies which lie in environments with a higher density of companions. On the contrary, if a weak tendency exists, for galaxies with gas counterrotation only, it is discovered in regions of space where the large scale density of galaxies is smaller. Our results tend to disprove the hypothesis that counterrotation and polar rings derive from a recent interaction with a small satellite or a galaxy of similar size. To a first approximation, they seem to follow the idea that all galaxies are born through a merger process of smaller objects occurring very early in their life, or that they derive from a continuous, non-traumatic infall of gas that formed stars later. Whatever the special machinery is which produces counterrotation or polar rings instead of a co-planar, co-rotating distribution of gas and stars, it seems not to be connected to the present galaxy density of their environments.Comment: 9 pages, 1 figure, accepted for publication in A&

    Entropy Production in Collisionless Systems. I. Large Phase-Space Occupation Numbers

    Full text link
    Certain thermal non-equilibrium situations, outside of the astrophysical realm, suggest that entropy production extrema, instead of entropy extrema, are related to stationary states. In an effort to better understand the evolution of collisionless self-gravitating systems, we investigate the role of entropy production and develop expressions for the entropy production rate in two particular statistical families that describe self-gravitating systems. From these entropy production descriptions, we derive the requirements for extremizing the entropy production rate in terms of specific forms for the relaxation function in the Boltzmann equation. We discuss some implications of these relaxation functions and point to future work that will further test this novel thermodynamic viewpoint of collisionless relaxation.Comment: accepted for publication in Ap

    SDSS J143030.22-001115.1: A misclassified narrow-line Seyfert 1 galaxy with flat X-ray spectrum

    Full text link
    We used multi-component profiles to model Hβ\beta and [O III]λλ\lambda \lambda 4959,5007 lines for SDSS J143030.22-001115.1, a narrow-line Seyfert 1 galaxy (NLS1) in a sample of 150 NLS1s candidates selected from the Sloan Digital Sky Survey (SDSS) Early Data Release (EDR). After subtracting the Hβ\beta contribution from narrow line regions (NLRs), we found that its full width half maximum (FWHM) of broad Hβ\beta line is nearly 2900 \kms, significantly larger than the customarily adopted criterion of 2000 \kms. With its weak Fe II multiples, we think that SDSS J143030.22-001115.1 can't be classified as a genuine NLS1. When we calculate the virial black hole masses of NLS1s, we should use the Hβ\beta linewidth after subtracting the Hβ\beta contribution from NLRs.Comment: 7 pages, 1 table, accepted by ChJA

    X-ray Properties of Intermediate-Mass Black Holes in Active Galaxies. II. X-ray-Bright Accretion and Possible Evidence for Slim Disks

    Full text link
    We present X-ray properties of optically-selected intermediate-mass (~10^5--10^6 M_Sun) black holes (BHs) in active galaxies (AGNs), using data from the Chandra X-Ray Observatory. Our observations are a continuation of a pilot study by Greene & Ho (2007). Of the 8 objects observed, 5 are detected with X-ray luminosities in the range L_0.5-2 keV = 10^41--10^43 erg s^-1, consistent with the previously observed sample. Objects with enough counts to extract a spectrum are well fit by an absorbed power law. We continue to find a range of soft photon indices 1 < \Gamma_s < 2.7, where N(E) \propto E^-\Gamma_s, consistent with previous AGN studies, but generally flatter than other narrow-line Seyfert 1 active nuclei (NLS1s). The soft photon index correlates strongly with X-ray luminosity and Eddington ratio, but does not depend on BH mass. There is no justification for the inclusion of any additional components, such as a soft excess, although this may be a function of the relative inefficiency of detecting counts above 2 keV in these relatively shallow observations. As a whole, the X-ray-to-optical spectral slope \alpha_ox is flatter than in more massive systems, even other NLS1s. Only X-ray-selected NLS1s with very high Eddington ratios share a similar \alpha_ox. This is suggestive of a physical change in the accretion structure at low masses and at very high accretion rates, possibly due to the onset of slim disks. Although the detailed physical explanation for the X-ray loudness of these intermediate-mass BHs is not certain, it is very striking that targets selected on the basis of optical properties should be so distinctly offset in their broader spectral energy distributions.Comment: 11 pages, 6 figures, submitted to ApJ, emulateap

    Evidence for an intermediate line region in AGN's inner torus region and its evolution from narrow to broad line Seyfert I galaxies

    Full text link
    A two-components model for Broad Line Region (BLR) of Active Galactic Nuclei (AGN) has been suggested for many years but not widely accepted (e.g., Hu et al. 2008; Sulentic et al. 2000; Brotherton et al. 1996; Mason et al. 1996). This model indicates that the broad line can be described with superposition of two Gaussian components (Very Broad Gaussian Component (VBGC) and InterMediate Gaussian Component (IMGC)) which are from two physically distinct regions; i.e., Very Broad Line Region (VBLR) and InterMediate Line Region (IMLR). We select a SDSS sample to further confirm this model and give detailed analysis to the geometry, density and evolution of these two regions. Micro-lensing result of BLR in J1131-1231 and some unexplained phenomena in Reverberation Mapping (RM) experiment provide supportive evidence for this model. Our results indicate that the radius obtained from the emission line RM normally corresponds to the radius of the VBLR, and the existence of the IMGC may affect the measurement of the black hole masses in AGNs. The deviation of NLS1s from the M-sigma relation and the Type II AGN fraction as a function of luminosity can be explained in this model in a coherent way. The evolution of the two emission regions may be related to the evolutionary stages of the broad line regions of AGNs from NLS1s to BLS1s. Based on the results presented here, a unified picture of hierarchical evolution of black hole, dust torus and galaxy is proposed.Comment: 58 pages, 19 figures, 1 table. Matches the published versio

    Kinematic deprojection and mass inversion of spherical systems of known velocity anisotropy

    Full text link
    Traditionally, the mass / velocity anisotropy degeneracy (MAD) inherent in the spherical, stationary, non-streaming Jeans equation has been handled by assuming a mass profile and fitting models to the observed kinematical data. Here, the opposite approach is considered: the equation of anisotropic kinematic projection is inverted for known arbitrary anisotropy to yield the space radial velocity dispersion profile in terms of an integral involving the radial profiles of anisotropy and isotropic dynamical pressure. Then, through the Jeans equation, the mass profile is derived in terms of double integrals of observable quantities. Single integral formulas for both deprojection and mass inversion are provided for several simple anisotropy models (isotropic, radial, circular, general constant, Osipkov-Merritt, Mamon-Lokas and Diemand-Moore-Stadel). Tests of the mass inversion on NFW models with these anisotropy models yield accurate results in the case of perfect observational data, and typically better than 70% (in 4 cases out of 5) accurate mass profiles for the sampling errors expected from current observational data on clusters of galaxies. For the NFW model with mildly increasing radial anisotropy, the mass is found to be insensitive to the adopted anisotropy profile at 7 scale radii and to the adopted anisotropy radius at 3 scale radii. This anisotropic mass inversion method is a useful complementary tool to analyze the mass and anisotropy profiles of spherical systems. It provides the practical means to lift the MAD in quasi-spherical systems such as globular clusters, round dwarf spheroidal and elliptical galaxies, as well as groups and clusters of galaxies, when the anisotropy of the tracer is expected to be linearly related to the slope of its density.Comment: Accepted in MNRAS. 19 pages. Minor changes from previous version: Table 1 of nomenclature, some math simplifications, paragraph in Discussion on alternative deprojection method by deconvolution. 19 pages. 6 figure

    Towards an understanding of the evolution of the scaling relations for supermassive black holes

    Full text link
    The growth of the supermassive black holes (BHs) that reside at the centres of most galaxies is intertwined with the physical processes that drive the formation of the galaxies themselves. The evolution of the relations between the mass of the BH, m_BH, and the properties of its host therefore represent crucial aspects of the galaxy formation process. We use a cosmological simulation, as well as an analytical model, to investigate how and why the scaling relations for BHs evolve with cosmic time. We find that a simulation that reproduces the observed redshift zero relations between m_BH and the properties of its host galaxy, as well as the thermodynamic profiles of the intragroup medium, also reproduces the observed evolution in the ratio m_BH/m_s for massive galaxies, although the evolution of the m_BH/sigma relation is in apparent conflict with observations. The simulation predicts that the relations between m_BH and the binding energies of both the galaxy and its dark matter halo do not evolve, while the ratio m_BH/m_halo increases with redshift. The simple, analytic model of Booth & Schaye (2010), in which the mass of the BH is controlled by the gravitational binding energy of its host halo, quantitatively reproduces the latter two results. Finally, we can explain the evolution in the relations between m_BH and the mass and binding energy of the stellar component of its host galaxy for massive galaxies (m_s~10^11 M_sun) at low redshift (z<1) if these galaxies grow primarily through dry mergers.Comment: 8 pages, 3 figures; MNRAS accepte

    Tracing spiral density waves in M81

    Full text link
    We use SPITZER IRAC 3.6 and 4.5micron near infrared data from the Spitzer Infrared Nearby Galaxies Survey (SINGS), optical B, V and I and 2MASS Ks band data to produce mass surface density maps of M81. The IRAC 3.6 and 4.5micron data, whilst dominated by emission from old stellar populations, is corrected for small-scale contamination by young stars and PAH emission. The I band data are used to produce a mass surface density map by a B-V colour-correction, following the method of Bell and de Jong. We fit a bulge and exponential disc to each mass map, and subtract these components to reveal the non-axisymmetric mass surface density. From the residual mass maps we are able to extract the amplitude and phase of the density wave, using azimuthal profiles. The response of the gas is observed via dust emission in the 8micron IRAC band, allowing a comparison between the phase of the stellar density wave and gas shock. The relationship between this angular offset and radius suggests that the spiral structure is reasonably long lived and allows the position of corotation to be determined.Comment: 15 pages, 17 figures, accepted for publication in MNRA

    The Halo Shape and Evolution of Polar Disc Galaxies

    Get PDF
    We examine the properties and evolution of a simulated polar disc galaxy. This galaxy is comprised of two orthogonal discs, one of which contains old stars (old stellar disc), and the other, containing both younger stars and the cold gas (polar disc) of the galaxy. By exploring the shape of the inner region of the dark matter halo, we are able to confirm that the halo shape is a oblate ellipsoid flattened in the direction of the polar disc. We also note that there is a twist in the shape profile, where the innermost 3 kpc of the halo flattens in the direction perpendicular to the old disc, and then aligns with the polar disc out until the virial radius. This result is then compared to the halo shape inferred from the circular velocities of the two discs. We also use the temporal information of the simulation to track the system's evolution, and identify the processes which give rise to this unusual galaxy type. We confirm the proposal that the polar disc galaxy is the result of the last major merger, where the angular moment of the interaction is orthogonal to the angle of the infalling gas. This merger is followed by the resumption of coherent gas infall. We emphasise that the disc is rapidly restored after the major merger and that after this event the galaxy begins to tilt. A significant proportion of the infalling gas comes from filaments. This infalling gas from the filament gives the gas its angular momentum, and, in the case of the polar disc galaxy, the direction of the gas filament does not change before or after the last major merger.Comment: Accepted for publication in MNRAS; 14 pages; 14 figure
    corecore