55 research outputs found
Evaluation of mahogany homogenous stands, Swietenia macrophylla King, compared to mixed stands with Eucalyptus urophylla S. T. Blake, 40 months after planting
Na Amazônia, plantios de mogno têm sido limitados por ataques de Hypsiphylla grandella Zeller. No entanto, plantios em áreas urbanas em Brasília vêm apresentando bom desenvolvimento. O objetivo deste trabalho foi observar o comportamento do mogno em plantios homogêneo e consorciado. Para isso foi instalado um experimento na Fazenda Água Limpa, da Universidade de Brasília (UnB), Distrito Federal, com dois tratamentos: plantio homogêneo e plantio misto com eucalipto. O primeiro consistiu no plantio homogêneo de mogno e o segundo, consorciado com eucalipto. Foram medidas as variáveis altura aos 7, 12, 15, 24, 28, 36 e 40 meses de idade e diâmetro aos 7, 24, 28, 36 e 40 meses. O delineamento utilizado foi inteiramente ao acaso, em esquema de parcelas subdivididas, sendo os tratamentos as parcelas e o tempo, as subparcelas. A altura média aos 40 meses do consórcio foi de 2,28 m e do homogêneo, de 3,45 m, sendo as alturas máximas, respectivamente, de 4,15 e 5,17 m. O diâmetro médio também foi maior no tratamento homogêneo do que no consórcio (4,08 e 6,92 cm, respectivamente). A mortalidade situou-se em torno de 20%, tanto no plantio homogêneo quanto no consorciado, não havendo diferenças significativas. O ataque das larvas de H. grandella foi menor no plantio consorciado, indicando que o eucalipto serve como barreira física, diminuindo o ataque da praga, porém a competição de ambos ocasionou menor crescimento do mogno.In the Amazon, plantations of mahogany have been limited by attacks of Hypsiphylla grandella Zeller. On the other hand, urban plantings in Brasília have developed well. The objective of this work was to observe the development of mahogany in homogenous or in mixed stands with eucalypts planted in the Água Limpa farm at the University of Brasilia - Federal District. The variables height, at 7, 12, 15, 24, 28, 36 and 40 months of age, and diameter, at 7, 24, 28, 36 and 40 months were measured. A split-plot entirely randomized design was used, the treatments being the plot and time the sub-plot. The average height of mahogan 40 months after planting in the mixed stands was of 2.28 m, whereas in homogenous stands it was 3.45 m and the maximum heights recorded were 4.15 m and 5.17 m respectively. The average diameter was also larger in the homogenous stand, with 6.92 cm compared to 4.08 cm for the mixed stands. Mortality was around 20% under both conditions. Attacks by H. grandella larvae was less in mixed stands, indicating that the eucalypts may function as a barrier, reducing the attack
Causes of genome instability: the effect of low dose chemical exposures in modern society.
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis
EPAS1 Attenuates Atherosclerosis Initiation at Disturbed Flow Sites Through Endothelial Fatty Acid Uptake.
BackgroundAtherosclerotic plaques form unevenly due to disturbed blood flow, causing localized endothelial cell (EC) dysfunction. Obesity exacerbates this process, but the underlying molecular mechanisms are unclear. The transcription factor EPAS1 (HIF2A) has regulatory roles in endothelium, but its involvement in atherosclerosis remains unexplored. This study investigates the potential interplay between EPAS1, obesity, and atherosclerosis.MethodsResponses to shear stress were analyzed using cultured porcine aortic EC exposed to flow in vitro coupled with metabolic and molecular analyses and by en face immunostaining of murine aortic EC exposed to disturbed flow in vivo. Obesity and dyslipidemia were induced in mice via exposure to a high-fat diet or through Leptin gene deletion. The role of Epas1 in atherosclerosis was evaluated by inducible endothelial Epas1 deletion, followed by hypercholesterolemia induction (adeno-associated virus-PCSK9 [proprotein convertase subtilisin/kexin type 9]; high-fat diet).ResultsEn face staining revealed EPAS1 enrichment at sites of disturbed blood flow that are prone to atherosclerosis initiation. Obese mice exhibited substantial reduction in endothelial EPAS1 expression. Sulforaphane, a compound with known atheroprotective effects, restored EPAS1 expression and concurrently reduced plasma triglyceride levels in obese mice. Consistently, triglyceride derivatives (free fatty acids) suppressed EPAS1 in cultured EC by upregulating the negative regulator PHD2. Clinical observations revealed that reduced serum EPAS1 correlated with increased endothelial PHD2 and PHD3 in obese individuals. Functionally, endothelial EPAS1 deletion increased lesion formation in hypercholesterolemic mice, indicating an atheroprotective function. Mechanistic insights revealed that EPAS1 protects arteries by maintaining endothelial proliferation by positively regulating the expression of the fatty acid-handling molecules CD36 (cluster of differentiation 36) and LIPG (endothelial type lipase G) to increase fatty acid beta-oxidation.ConclusionsEndothelial EPAS1 attenuates atherosclerosis at sites of disturbed flow by maintaining EC proliferation via fatty acid uptake and metabolism. This endothelial repair pathway is inhibited in obesity, suggesting a novel triglyceride-PHD2 modulation pathway suppressing EPAS1 expression. These findings have implications for therapeutic strategies addressing vascular dysfunction in obesity
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Genetic mechanisms of critical illness in COVID-19.
Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 × 10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
Violent Governance, Identity and the Production of Legitimacy: Autodefensas in Latin America
This article examines the intersections of violence, governance, identity and legitimacy in relation to autodefensas (self-defence groups) in Latin America, focusing on Mexico and Colombia. By shifting focus from the question of where legitimacy lies to how it is produced and contested by a range of groups, we challenge the often presumed link between the state and legitimacy. We develop the idea of a field of negotiation and contestation, firstly, to discuss and critique the concept of state failure as not merely a Western hegemonic claim but also a strategic means of producing legitimacy by autodefensas. Secondly, we employ and enrich the notion of violent pluralism to discuss the pervasiveness of violence and the role of neoliberalism, and to address the question of non-violent practices of governance. We argue that the idea of a field of contestation and negotiation helps to understand the complexity of relationships that encompass the production of legitimacy and identity through (non)violent governance, whereby lines between (non)state, (non)violence, and (il)legitimacy blur and transform. Yet, we do not simply dismiss (binary) distinctions as these continue to be employed by groups in their efforts to produce, justify, challenge, contest and negotiate their own and others’ legitimacy and identity
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
- …