102 research outputs found

    Acute Versus Chronic Loss of Mammalian Azi1/Cep131 Results in Distinct Ciliary Phenotypes

    Get PDF
    Defects in cilium and centrosome function result in a spectrum of clinically-related disorders, known as ciliopathies. However, the complex molecular composition of these structures confounds functional dissection of what any individual gene product is doing under normal and disease conditions. As part of an siRNA screen for genes involved in mammalian ciliogenesis, we and others have identified the conserved centrosomal protein Azi1/Cep131 as required for cilia formation, supporting previous Danio rerio and Drosophila melanogaster mutant studies. Acute loss of Azi1 by knock-down in mouse fibroblasts leads to a robust reduction in ciliogenesis, which we rescue by expressing siRNA-resistant Azi1-GFP. Localisation studies show Azi1 localises to centriolar satellites, and traffics along microtubules becoming enriched around the basal body. Azi1 also localises to the transition zone, a structure important for regulating traffic into the ciliary compartment. To study the requirement of Azi1 during development and tissue homeostasis, Azi1 null mice were generated (Azi1(Gt/Gt)). Surprisingly, Azi1(Gt/Gt) MEFs have no discernible ciliary phenotype and moreover are resistant to Azi1 siRNA knock-down, demonstrating that a compensation mechanism exists to allow ciliogenesis to proceed despite the lack of Azi1. Cilia throughout Azi1 null mice are functionally normal, as embryonic patterning and adult homeostasis are grossly unaffected. However, in the highly specialised sperm flagella, the loss of Azi1 is not compensated, leading to striking microtubule-based trafficking defects in both the manchette and the flagella, resulting in male infertility. Our analysis of Azi1 knock-down (acute loss) versus gene deletion (chronic loss) suggests that Azi1 plays a conserved, but non-essential trafficking role in ciliogenesis. Importantly, our in vivo analysis reveals Azi1 mediates novel trafficking functions necessary for flagellogenesis. Our study highlights the importance of both acute removal of a protein, in addition to mouse knock-out studies, when functionally characterising candidates for human disease

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe

    Quantitative Analysis of Tobacco-Specific Nitrosamines and their Precursor Alkaloids in Tobacco Extracts

    No full text
    Tobacco-specific nitrosamines (TSNA) are carcinogenic constituents derived from alkaloids in tobacco. Researchers are actively exploring several avenues to reduce TSNA levels in tobacco products like moist snuff tobacco. The focus of the research presented within is the quantitative analysis of TSNA in tobacco, specifically N’-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1(3-pyridyl)-1-butanone (NNK), N’-nitrosoanatabine (NAT), and N’-nitrosoanabasine (NAB). Tobacco alkaloids and nitrosamines in tobacco are currently analyzed by different instrumentation due to orders of magnitude difference in their concentrations, chromatographic separation challenges due to structural similarities, and similar mass fragmentation patterns. An analytical column using silica and 1,2-bis(siloxy)ethane hybrid particles of 1.7 µm size is the foundation of a chromatographic separation of NNN, NNK, NAT, NAB, nicotine, nornicotine, anatabine, and anabasine. This is the first rapid and robust quantitative method for the TSNA and their alkaloid precursors using high pH mobile phase conditions with ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The suitability of the method is demonstrated by its application to the analysis of reference tobacco materials for cigarettes and moist snuff. In addition, a novel TSNA analytical method was developed using TSNA-specific molecularly imprinted polymers (MIP) as the selective extraction element from tobacco extract. The affinity mechanisms between MIP and TSNA were found to have extensive cross-reactivity to structurally similar alkaloids present in tobacco extract. TSNA-specific MIP was demonstrated to have stronger retention for the alkaloids than for the TSNA substrate. The MIP-TSNA interaction was optimized to create the first analytical method to quantify underivatized NNN and NNK from tobacco extracts by HPLC-UV

    Genes Involved in Radiation Therapy Response in Head and Neck Cancers

    No full text
    OBJECTIVES: This is a pilot study designed to identify gene expression profiles able to stratify head and neck squamous cell carcinoma (HNSCC) tumors that may or may not respond to chemoradiation or radiation therapy. STUDY DESIGN: We prospectively evaluated 14 HNSCC specimens, arising from patients undergoing chemoradiotherapy or radiotherapy alone with curative intent. A complete response was assessed by clinical evaluation with no evidence of gross tumor after a 2-year follow-up period. METHODS: Residual biopsy samples from eight complete responders (CR) and six nonresponders (NR) were evaluated by genome-wide gene expression profiling using HG-U133A 2.0 arrays. Univariate parametric t-tests with proportion of false discoveries controlled by multivariate permutation tests were used to identify genes with significantly different gene expression levels between CR and NR cases. Six different prediction algorithms were used to build gene predictor lists. Three representative genes showing 100% crossvalidation support after leave-one-out crossvalidation (LOOCV) were further validated using real-time QRT-PCR. RESULTS: We identified 167 significant probe sets that discriminate between the two classes, which were used to build gene predictor lists. Thus, 142 probe sets showed an accuracy of prediction ranging from 93% to 100% across all six prediction algorithms. The genes represented by these 142 probe sets were further classified into different functional networks that included cellular development, cellular movement, and cancer. CONCLUSIONS: The results presented herein offer encouraging preliminary data that may provide a basis for a more precise prognosis of HNSCC, as well as a molecular-based therapy decision for the management of these cancers

    Characterization of potential impurities and degradation products in electronic cigarette formulations and aerosols

    Get PDF
    AbstractE-cigarettes are gaining popularity in the U.S. as well as in other global markets. Currently, limited published analytical data characterizing e-cigarette formulations (e-liquids) and aerosols exist. While FDA has not published a harmful and potentially harmful constituent (HPHC) list for e-cigarettes, the HPHC list for currently regulated tobacco products may be useful to analytically characterize e-cigarette aerosols. For example, most e-cigarette formulations contain propylene glycol and glycerin, which may produce aldehydes when heated. In addition, nicotine-related chemicals have been previously reported as potential e-cigarette formulation impurities. This study determined e-liquid formulation impurities and potentially harmful chemicals in aerosols of select commercial MarkTen® e-cigarettes manufactured by NuMark LLC. The potential hazard of the identified formulation impurities and aerosol chemicals was also estimated. E-cigarettes were machine puffed (4-s duration, 55-mL volume, 30-s intervals) to battery exhaustion to maximize aerosol collection. Aerosols analyzed for carbonyls were collected in 20-puff increments to account for analyte instability. Tobacco specific nitrosamines were measured at levels observed in pharmaceutical grade nicotine. Nicotine-related impurities in the e-cigarette formulations were below the identification and qualification thresholds proposed in ICH Guideline Q3B(R2). Levels of potentially harmful chemicals detected in the aerosols were determined to be below published occupational exposure limits
    corecore