208 research outputs found

    Assessing The Success of The 2020 Kansas State Research and Extension Summer Research Program: A Virtual Research Experience

    Get PDF
    Ethnic minorities, and specifically African American students are not participating in graduate programs at the same rate as non-minority students. In 2006, Kansas State University College of Agriculture Diversity Programs Office (DPO) established the Kansas State Research and Extension (KSRE) Summer Research Fellows Program to expose African American and other ethnic minority students to the agricultural sciences graduate research opportunities. Due to the Covid-19 pandemic, the 2020 KSRE Summer Research Fellows Program was held virtually to protect the health and safety of participants. The purpose of this study was to evaluate the effectiveness of the virtual program. Data from five 2020 participants were collected using a 5-point Likert scale assessment and analyzed as a case study and by descriptive statistics. As a result of this case study, participants successfully gained knowledge of graduate school and careers in agriculture. Findings will be utilized to further enhance student experience in the program

    The Cape San Blas Ecological Study

    Get PDF
    Eglin AFB on Cape San Blas consists of approximately 250 acres located about 180 miles east of the main Eglin reservation. This area lies on the S1. Joseph peninsula, part of a dynamic barrier island chain that extends across the northern Gulf of Mexico. Due to the natural forces that formed Cape San Blas and those that maintain this area, St. Joseph Peninsula has experienced severe land form change over time (see GIS land form change maps). These changes allow for fluctuations in habitat types along Cape San Blas (see GIS land cover change maps)that influence the floral and faunal species using this area. The dynamic environment along Cape San Blasincludes flatwoods, interdunal swale, rosemary scrub, and beachfront. These habitats support a wide array of species, including several threatened and endangered species such as the loggerhead sea turtle (Caretta caretta), PipingPlover (Charadnus melodus), Least Tern (Sterna antillarum), and Bald Eagle (Haliaeetus leucocephalus). Proper management of these species and their habitats require knowledge of their abundance and distribution, and the effects disturbances have on their survival. In addition to threatened and endangered flora and fauna, Cape San Blas also supports tourists and recreationists. Although Gulf County is sparsely populated, with approximately 13,000 inhabitants throughout 578 square miles, summer tourism and heavy recreational use of beaches for fishing, crabbing, and shelling place continued and increasing pressure on the natural resources of these areas (Rupert 1991). Gulf County is also one of the few remaining counties in Florida that permits vehicular traffic on its beaches, including Cape San Blas. In addition to recreational use of these habitats;EAFB also uses the area for military missions. Air Force property on Cape San Blas is primarily used for radar tracking of flying missions over the Gulf of Mexico, although in recent years it has been used for missile launchings and other various military activities. To allow continued military and public use of Air Force property while also protecting the unique flora and fauna of the area,EAFB proposed a characterization of the resources found along Cape San Blas. A complete inventory of the physical features of the area included investigating topography, soil chemistry, hydrology, archeology, and the dynamics of land mass and land cover change over time. Various thematic layers within a geographic information system (GIS) were used to spatially portray georeferenced data. Large scale changes over time were assessed using stereo aerial photography. Vegetation transects, soil samples, elevation transects, an archeological survey, freshwater wells, and a tidal monitor were used to investigate the remaining features. (247 page document

    Integrating influenza antigenic dynamics with molecular evolution.

    Get PDF
    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001

    The Iowa Homemaker vol.20, no.1

    Get PDF
    Recreation that Recreates, Editor, page 1 Dual Personalities, Catherine Raymond, page 2 Married Right Out of College, Mary Ellen Lynch Brown, page 3 Sally Bows to Summer’s Sun, Kathryn Cooley, page 4 Selling Yourself, Kathryn Monson, page 6 I Want a Cotton Dress, Marcia E. Turner, page 7 Playtime Pays Dividends, Jane Wiley, page 8 Behind Closed Doors, Margaret Kumlien, page 9 Sunshine Sports, Jeanette Woodward, page 10 Packing the Convention Bag, Shirley Ambrose, page 11 What’s New in Home Economics, page 12 Veishea Presents, Adelaide Richardson, page 14 Picnic Basket, Dorothy Jo Weber, page 16 Alums in the News, Bette Simpson, page 17 Make Room for Music, Nancy Mason, page 18 Behind Bright Jackets, Betty Bice, page 20 Journalistic Spindles, Dorothy Anne Roost, page 23 Biography of a Home Economist, Eleanor White, page 2

    Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis

    Get PDF
    Receptor mediated endocytosis (RME) plays a major role in the disposition of therapeutic protein drugs in the body. It is suspected to be a major source of nonlinear pharmacokinetic behavior observed in clinical pharmacokinetic data. So far, mostly empirical or semi-mechanistic approaches have been used to represent RME. A thorough understanding of the impact of the properties of the drug and of the receptor system on the resulting nonlinear disposition is still missing, as is how to best represent RME in pharmacokinetic models. In this article, we present a detailed mechanistic model of RME that explicitly takes into account receptor binding and trafficking inside the cell and that is used to derive reduced models of RME which retain a mechanistic interpretation. We find that RME can be described by an extended Michaelis–Menten model that accounts for both the distribution and the elimination aspect of RME. If the amount of drug in the receptor system is negligible a standard Michaelis–Menten model is capable of describing the elimination by RME. Notably, a receptor system can efficiently eliminate drug from the extracellular space even if the total number of receptors is small. We find that drug elimination by RME can result in substantial nonlinear pharmacokinetics. The extent of nonlinearity is higher for drug/receptor systems with higher receptor availability at the membrane, or faster internalization and degradation of extracellular drug. Our approach is exemplified for the epidermal growth factor receptor system

    Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization.

    Get PDF
    P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na(+) and N-methyl-D-glucamine (NMDG(+)) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death.This work was supported by the Biotechnology and Biological Sciences Research Council (BB/F001320/1), the David James Studentship, Department of Pharmacology, University of Cambridge and the Marshall Scholarship.This paper was originally published in The Journal of Biological Chemistry (Robinson LE, Shridar M, Smith P, Murrell-Lagnado RD, The Journal of Biological Chemistry 2014, 289, 46, 31983–31994, doi:10.1074/jbc.M114.574699

    A naturally protective epitope of limited variability as an influenza vaccine target

    Get PDF
    Current antigenic targets for influenza vaccine development are either highly immunogenic epitopes of high variability or conserved epitopes of low immunogenicity. This requires continuous update of the variable epitopes in the vaccine formulation or boosting of immunity to invariant epitopes of low natural efficacy. Here we identify a highly immunogenic epitope of limited variability in the head domain of the H1 haemagglutinin protein. We show that a cohort of young children exhibit natural immunity to a set of historical influenza strains which they could not have previously encountered and that this is partially mediated through the epitope. Furthermore, vaccinating mice with these epitope conformations can induce immunity to human H1N1 influenza strains that have circulated since 1918. The identification of epitopes of limited variability offers a mechanism by which a universal influenza vaccine can be created; these vaccines would also have the potential to protect against newly emerging influenza strains

    EMSL Geochemistry, Biogeochemistry and Subsurface Science-Science Theme Advisory Panel Meeting

    Full text link
    This report covers the topics of discussion and the recommendations of the panel members. On December 8 and 9, 2010, the Geochemistry, Biogeochemistry, and Subsurface Science (GBSS) Science Theme Advisory Panel (STAP) convened for a more in-depth exploration of the five Science Theme focus areas developed at a similar meeting held in 2009. The goal for the fiscal year (FY) 2011 meeting was to identify potential topical areas for science campaigns, necessary experimental development needs, and scientific members for potential research teams. After a review of the current science in each of the five focus areas, the 2010 STAP discussions successfully led to the identification of one well focused campaign idea in pore-scale modeling and five longer-term potential research campaign ideas that would likely require additional workshops to identify specific research thrusts. These five campaign areas can be grouped into two categories: (1) the application of advanced high-resolution, high mass accuracy experimental techniques to elucidate the interplay between geochemistry and microbial communities in terrestrial ecosystems and (2) coupled computation/experimental investigations of the electron transfer reactions either between mineral surfaces and outer membranes of microbial cells or between the outer and inner membranes of microbial cells
    corecore