2,184 research outputs found

    Topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite coatings on carbon fibre-reinforced poly(etheretherketone)

    Get PDF
    In the present study, topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite (HA) coatings on carbon fibre-reinforced polyetheretherketone (CF/PEEK) was performed. VPS-Ti coatings with high roughness values (Ra=28.29±3.07 μm, Rz=145.35±9.88 μm) were obtained. On this titanium, intermediate layer HA coatings of various thicknesses were produced. With increasing coating thickness, roughness values of the HA coatings decreased. A high increase of profile length ratio, Lr, of the VPS-Ti coatings (Lr=1.45) compared to the grit-blasted CF/PEEK substrate (Lr=1.08) was observed. Increasing the HA coating thickness resulted in a reduction of the Lr values similar to the roughness values. Fractal analysis of the obtained roughness profiles revealed that the VPS-Ti coatings showed the highest fractal dimension of D=1.34±0.02. Fractal dimension dropped to a value of 1.23-1.25 for all HA coatings. No physical deterioration of the CF/PEEK substrate was observed, indicating that substrate drying and the used VPS process parameter led to the desired coatings on the composite material. Cross-section analysis revealed a good interlocking between the titanium intermediate layer and the PEEK substrate. It is therefore assumed that this interlocking results in suitable mechanical adhesive strength. From the results obtained in this study it is concluded that VPS is a suitable method for manufacturing HA coatings on carbon fibre-reinforced PEEK implant material

    ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains

    Get PDF
    Z-DNA binding protein 1 (ZBP1) belongs to a family of proteins that contain the Zα domain, which binds specifically to left-handed Z-DNA and Z-RNA. Like all vertebrate proteins in the Zα family, it contains two Zα-like domains and is highly inducible by immunostimulation. Using circular dichroism spectroscopy and electrophoretic mobility shift assays we show that both Zα domains can bind Z-DNA independently and that substrate binding is greatly enhanced when both domains are linked. Full length ZBP1 and a prominent splice variant lacking the first Zα domain (ΔZα) showed strikingly different subcellular localizations. While the full length protein showed a finely punctate cytoplasmatic distribution, ZBP1ΔZα accumulated in large cytoplasmic granules. Mutation of residues important for Z-DNA binding in the first Zα domain resulted in a distribution comparable to that of ZBP1ΔZα. The ZBP1ΔZα granules are distinct from stress granules (SGs) and processing bodies but dynamically interacted with these. Polysome stabilization led to the disassembly of ZBP1ΔZα granules, indicating that mRNA are integral components. Heat shock and arsenite exposure had opposing effects on ZBP1 isoforms: while ZBP1ΔZα granules disassembled, full length ZBP1 accumulated in SGs. Our data link ZBP1 to mRNA sorting and metabolism and indicate distinct roles for ZBP1 isoforms

    Inhibition of Y1 receptor signaling improves islet transplant outcome

    Get PDF
    Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe

    Response of AGATA Segmented HPGe Detectors to Gamma Rays up to 15.1 MeV

    Get PDF
    The response of AGATA segmented HPGe detectors to gamma rays in the energy range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the reaction d(11B,ng)12C at Ebeam = 19.1 MeV, while gamma-rays between 2 to 9 MeV were produced using an Am-Be-Fe radioactive source. The energy resolution and linearity were studied and the energy-to-pulse-height conversion resulted to be linear within 0.05%. Experimental interaction multiplicity distributions are discussed and compared with the results of Geant4 simulations. It is shown that the application of gamma-ray tracking allows a suppression of background radiation following neutron capture by Ge nuclei. Finally the Doppler correction for the 15.1 MeV gamma line, performed using the position information extracted with Pulse-shape Analysis, is discussed.Comment: 10 pages, 11 figure

    Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs

    Get PDF
    <p>Various anti-epileptic drugs (AEDs) are used for the management of idiopathic epilepsy (IE) in dogs. Their safety profile is an important consideration for regulatory bodies, owners and prescribing clinicians. However, information on their adverse effects still remains limited with most of it derived from non-blinded non-randomized uncontrolled trials and case reports.</p><p><span>This poster won third place, which was presented at the Veterinary Evidence Today conference, Edinburgh November 1-3, 2016. </span></p><br /> <img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" /

    Inflammation leads through PGE/EP3 signaling to HDAC5/MEF2-dependent transcription in cardiac myocytes

    Get PDF
    The myocyte enhancer factor 2 (MEF2) regulates transcription in cardiac myocytes and adverse remodeling of adult hearts. Activators of G protein-coupled receptors (GPCRs) have been reported to activate MEF2, but a comprehensive analysis of GPCR activators that regulate MEF2 has to our knowledge not been performed. Here, we tested several GPCR agonists regarding their ability to activate a MEF2 reporter in neonatal rat ventricular myocytes. The inflammatory mediator prostaglandin E2 (PGE2) strongly activated MEF2. Using pharmacological and protein-based inhibitors, we demonstrated that PGE2 regulates MEF2 via the EP3 receptor, the betagamma subunit of Gi/o protein and two concomitantly activated downstream pathways. The first consists of Tiam1, Rac1, and its effector p21-activated kinase 2, the second of protein kinase D. Both pathways converge on and inactivate histone deacetylase 5 (HDAC5) and thereby de-repress MEF2. In vivo, endotoxemia in MEF2-reporter mice induced upregulation of PGE2 and MEF2 activation. Our findings provide an unexpected new link between inflammation and cardiac remodeling by de-repression of MEF2 through HDAC5 inactivation, which has potential implications for new strategies to treat inflammatory cardiomyopathies

    Antihyperalgesia by α2-GABAA Receptors Occurs Via a Genuine Spinal Action and Does Not Involve Supraspinal Sites

    Get PDF
    Drugs that enhance GABAergic inhibition alleviate inflammatory and neuropathic pain after spinal application. This antihyperalgesia occurs mainly through GABAA receptors (GABAARs) containing α2 subunits (α2-GABAARs). Previous work indicates that potentiation of these receptors in the spinal cord evokes profound antihyperalgesia also after systemic administration, but possible synergistic or antagonistic actions of supraspinal α2-GABAARs on spinal antihyperalgesia have not yet been addressed. Here we generated two lines of GABAAR-mutated mice, which either lack α2-GABAARs specifically from the spinal cord, or, which express only benzodiazepine-insensitive α2-GABAARs at this site. We analyzed the consequences of these mutations for antihyperalgesia evoked by systemic treatment with the novel non-sedative benzodiazepine site agonist HZ166 in neuropathic and inflammatory pain. Wild-type mice and both types of mutated mice had similar baseline nociceptive sensitivities and developed similar hyperalgesia. However, antihyperalgesia by systemic HZ166 was reduced in both mutated mouse lines by about 60% and was virtually indistinguishable from that of global point-mutated mice, in which all α2-GABAARs were benzodiazepine insensitive. The major (α2-dependent) component of GABAAR-mediated antihyperalgesia was therefore exclusively of spinal origin, whereas supraspinal α2-GABAARs had neither synergistic nor antagonistic effects on antihyperalgesia. Our results thus indicate that drugs that specifically target α2-GABAARs exert their antihyperalgesic effect through enhanced spinal nociceptive control. Such drugs may therefore be well-suited for the systemic treatment of different chronic pain conditions

    Medicine is patriarchal, but alternative medicine is not the answer

    Get PDF
    Women are over-represented within alternative medicine, both as consumers and as service providers. In this paper, I show that the appeal of alternative medicine to women relates to the neglect of women’s health needs within scientific medicine. This is concerning because alternative medicine is severely limited in its therapeutic effects; therefore, those who choose alternative therapies are liable to experience inadequate healthcare. I argue that while many patients seek greater autonomy in alternative medicine, the absence of an evidence base and plausible mechanisms of action leaves patients unable to realize meaningful autonomy. This seems morally troubling, especially given that the neglect of women’s needs within scientific medicine seems to contribute to preferences for alternative medicine. I conclude that the liberatory credentials of alternative medicine should be questioned and make recommendations to render scientific medicine better able to meet the needs of typical alternative medicine consumers
    • …
    corecore