82 research outputs found

    Reliability of Synaptic Transmission at the Synapses of Held In Vivo under Acoustic Stimulation

    Get PDF
    BACKGROUND:The giant synapses of Held play an important role in high-fidelity auditory processing and provide a model system for synaptic transmission at central synapses. Whether transmission of action potentials can fail at these synapses has been investigated in recent studies. At the endbulbs of Held in the anteroventral cochlear nucleus (AVCN) a consistent picture emerged, whereas at the calyx of Held in the medial nucleus of the trapezoid body (MNTB) results on the reliability of transmission remain inconsistent. In vivo this discrepancy could be due to the difficulty in identifying failures of transmission. METHODS/FINDINGS:We introduce a novel method for detecting unreliable transmission in vivo. Based on the temporal relationship between a cells' waveform and other potentials in the recordings, a statistical test is developed that provides a balanced decision between the presence and the absence of failures. Its performance is quantified using simulated voltage recordings and found to exhibit a high level of accuracy. The method was applied to extracellular recordings from the synapses of Held in vivo. At the calyces of Held failures of transmission were found only rarely. By contrast, at the endbulbs of Held in the AVCN failures were found under spontaneous, excited, and suppressed conditions. In accordance with previous studies, failures occurred most abundantly in the suppressed condition, suggesting a role for inhibition. CONCLUSIONS/SIGNIFICANCE:Under the investigated activity conditions/anesthesia, transmission seems to remain largely unimpeded in the MNTB, whereas in the AVCN the occurrence of failures is related to inhibition and could be the basis/result of computational mechanisms for temporal processing. More generally, our approach provides a formal tool for studying the reliability of transmission with high statistical accuracy under typical in vivo recording conditions

    Synaptic Reorganization in the Adult Rat's Ventral Cochlear Nucleus following Its Total Sensory Deafferentation

    Get PDF
    Ablation of a cochlea causes total sensory deafferentation of the cochlear nucleus in the brainstem, providing a model to investigate nervous degeneration and formation of new synaptic contacts in the adult brain. In a quantitative electron microscopical study on the plasticity of the central auditory system of the Wistar rat, we first determined what fraction of the total number of synaptic contact zones (SCZs) in the anteroventral cochlear nucleus (AVCN) is attributable to primary sensory innervation and how many synapses remain after total unilateral cochlear ablation. Second, we attempted to identify the potential for a deafferentation-dependent synaptogenesis. SCZs were ultrastructurally identified before and after deafferentation in tissue treated for ethanolic phosphotungstic acid (EPTA) staining. This was combined with pre-embedding immunocytochemistry for gephyrin identifying inhibitory SCZs, the growth-associated protein GAP-43, glutamate, and choline acetyltransferase. A stereological analysis of EPTA stained sections revealed 1.11±0.09 (S.E.M.)×109 SCZs per mm3 of AVCN tissue. Within 7 days of deafferentation, this number was down by 46%. Excitatory and inhibitory synapses were differentially affected on the side of deafferentation. Excitatory synapses were quickly reduced and then began to increase in number again, necessarily being complemented from sources other than cochlear neurons, while inhibitory synapses were reduced more slowly and continuously. The result was a transient rise of the relative fraction of inhibitory synapses with a decline below original levels thereafter. Synaptogenesis was inferred by the emergence of morphologically immature SCZs that were consistently associated with GAP-43 immunoreactivity. SCZs of this type were estimated to make up a fraction of close to 30% of the total synaptic population present by ten weeks after sensory deafferentation. In conclusion, there appears to be a substantial potential for network reorganization and synaptogenesis in the auditory brainstem after loss of hearing, even in the adult brain

    Changes in glycine immunoreactivity in the rat superior olivary complex following deafness

    Full text link
    The balance between inhibitory and excitatory amino acid neurotransmitters contributes to the control of normal functioning of the auditory brainstem. Changes in the level of neuronal activity within the auditory brainstem pathways influence the balance between inhibition and excitation. Activity-dependent plasticity in the auditory pathways can be studied by creating a large decrease in activity through peripheral deafening. Deafness-related decreases in GABA have previously been shown in the inferior colliculus. However, glycine is a more prevalent inhibitory transmitter in the mature superior olivary complex (SOC). The present study therefore examined if there were deafness-related changes in glycine in the SOC using postembedding immunocytochemistry. Animals were bilaterally deafened by an intrascalar injection of neomycin. Five nuclei in the SOC, the lateral superior olive (LSO), superior paraolivary nucleus (SPoN), and the medial, lateral, and ventral nuclei of the trapezoid body (MNTB, LNTB, and VNTB) were examined 14 days following the deafening and compared to normal hearing age-matched controls. The LSO and SPoN were divided into high and low frequency regions. The number of glycine immunoreactive puncta on the somata of principal cells showed significant decreases in all regions assessed, with changes ranging from 50% in the VNTB to 23% in the LSO. J. Comp. Neurol. 494:179–189, 2006. © 2005 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49273/1/20795_ftp.pd

    Morphological characterization of bushy cells and their inputs in the laboratory mouse (Mus musculus) anteroventral cochlear nucleus.

    Get PDF
    PMC3753269Spherical and globular bushy cells of the AVCN receive huge auditory nerve endings specialized for high fidelity neural transmission in response to acoustic events. Recent studies in mice and other rodent species suggest that the distinction between bushy cell subtypes is not always straightforward. We conducted a systematic investigation of mouse bushy cells along the rostral-caudal axis in an effort to understand the morphological variation that gives rise to reported response properties in mice. We combined quantitative light and electron microscopy to investigate variations in cell morphology, immunostaining, and the distribution of primary and non-primary synaptic inputs along the rostral-caudal axis. Overall, large regional differences in bushy cell characteristics were not found; however, rostral bushy cells received a different complement of axosomatic input compared to caudal bushy cells. The percentage of primary auditory nerve terminals was larger in caudal AVCN, whereas non-primary excitatory and inhibitory inputs were more common in rostral AVCN. Other ultrastructural characteristics of primary auditory nerve inputs were similar across the rostral and caudal AVCN. Cross sectional area, postsynaptic density length and curvature, and mitochondrial volume fraction were similar for axosomatic auditory nerve terminals, although rostral auditory nerve terminals contained a greater concentration of synaptic vesicles near the postsynaptic densities. These data demonstrate regional differences in synaptic organization of inputs to mouse bushy cells rather than the morphological characteristic of the cells themselves.JH Libraries Open Access Fun

    Three New Species of \u3ci\u3eEimeria\u3c/i\u3e from Bolivian Marsupials

    Get PDF
    Faecal samples collected from 300 Bolivian marsupials (Didelphimorphia: Didelphidae) between 1984 and 1993 were examined for coccidian parasites. Sporulated oocysts were present in the faeces of 50 (17%) marsupials representing 11 genera and 22 species. Three new species of Eimeria are described and named from six host species. One species occurred in Marmosops dorothea, Monodelphis domestica and Thylamys venustus, another in Micoureus constantiae constantiae and Micoureus constantiae budini and a third in Marmosops dorothea. A discriminant analysis performed on five quantitative oocyst measurements revealed similarities between the first and third Eimeria species because of similar sizes and shapes of the oocysts, whereas the second Eimeria species was structurally discrete. The Eimeria that infects multiple hosts may be a common widespread species. Future surveys are advised for a thorough assessment of the coccidian biodiversity within Bolivian marsupials

    Artifacts in Wiener Kernels Estimated Using Gaussian White Noise

    No full text
    • …
    corecore