28 research outputs found

    Asian Motility Studies in Irritable Bowel Syndrome

    Get PDF
    Altered motility remains one of the important pathophysiologic factors in patients with irritable bowel syndrome (IBS) who commonly complain of abdominal pain and stool changes such as diarrhea and constipation. The prevalence of IBS has increased among Asian populations these days. Gastrointestinal (GI) physiology may vary between Asian and Western populations because of differences in diets, socio-cultural backgrounds, and genetic factors. The characteristics and differences of GI dysmotility in Asian IBS patients were reviewed. MEDLINE search work was performed including following terms, 'IBS,' 'motility,' 'transit time,' 'esophageal motility,' 'gastric motility,' 'small intestinal motility,' 'colonic motility,' 'anorectal function,' and 'gallbladder motility' and over 100 articles were categorized under 'esophagus,' 'stomach,' 'small intestine,' 'colon,' 'anorectum,' 'gallbladder,' 'transit,' 'motor pattern,' and 'effect of stressors.' Delayed gastric emptying, slow tansit in constipation predominant IBS patients, rapid transit in diarrhea predominant IBS patients, accelerated motility responses to various stressors such as meals, mental stress, or corticotrophin releasing hormones, and altered rectal compliance and altered rectal accomodation were reported in many Asian studies regarding IBS. Many conflicting results were found among these studies and there are still controversies to conclude these as unique features of Asian IBS patients. Multinational and multicenter studies are needed to be performed vigorously in order to elaborate characteristics as well as differences of altered motililty in Asian patients with IBS

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    A polymerase chain reaction-based method for isolating clones from a complimentary DNA library in sheep

    Get PDF
    The sheep (Ovis aries) is favored by many musculoskeletal tissue engineering groups as a large animal model because of its docile temperament and ease of husbandry. The size and weight of sheep are comparable to humans, which allows for the use of implants and fixation devices used in human clinical practice. The construction of a complimentary DNA (cDNA) library can capture the expression of genes in both a tissue- and time-specific manner. cDNA libraries have been a consistent source of gene discovery ever since the technology became commonplace more than three decades ago. Here, we describe the construction of a cDNA library using cells derived from sheep bones based on the pBluescript cDNA kit. Thirty clones were picked at random and sequenced. This led to the identification of a novel gene, C12orf29, which our initial experiments indicate is involved in skeletal biology. We also describe a polymerase chain reaction-based cDNA clone isolation method that allows the isolation of genes of interest from a cDNA library pool. The techniques outlined here can be applied in-house by smaller tissue engineering groups to generate tools for biomolecular research for large preclinical animal studies and highlights the power of standard cDNA library protocols to uncover novel genes
    corecore