9 research outputs found

    Evaluating Multi-Sensor Agreement of Satellite Particulate Backscatter Retrievals by Validatin Against In-Water Measurement

    Get PDF
    Biogeochemical-Argo profiling floats have increased in situ data density across multiple water types, creating new opportunities to evaluate satellite instrument-to-instrument differences in particulate back scattering coefficient(bbp). Retrievals of bbp from identical GIOP algorithm configurations differ between satellite instruments due to1)algorithm input differences and 2) radiometric differences. 3.Instrument-to-instrument differences must be considered before creating a merged timeseries of satellite ocean color products,in order to distinguish real, environmental contributions from spurious algorithmic or radiometricone

    Retrieving Marine Inherent Optical Properties from Satellites Using Temperature and Salinity-dependent Backscattering by Seawater

    Get PDF
    Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.g., phytoplankton, non-algal particles, and colored dissolved organic matter), and retrieve the magnitudes of each remaining constituent required to match the spectral distribution of measured radiances. Here, we explore the use of temperature- and salinity-dependent values for seawater backscattering in lieu of the constant spectrum currently employed by most SAAs. Our results suggest that use of temperature- and salinity-dependent seawater spectra elevate the SAA-derived particle backscattering, reduce the non-algal particles plus colored dissolved organic matter absorption, and leave the derived absorption by phytoplankton unchanged

    Consensus on Aquatic Primary Productivity Field Protocols for Satellite Validation and Model Synthesis

    Get PDF
    The NASA PACE project, in conjunction with the IOCCG, EUMETSAT, and JAXA, have initiated an Aquatic Primary Productivity working group, with the aim to develop community consensus on multiple methods for measuring aquatic primary productivity used for satellite validation and model synthesis. A workshop to commence the working group efforts was held December 05-07, 2018 at the University Space Research Association headquarters in Columbia, MD U.S.A., bringing together 26 active researchers from 16 institutions. The group discussed the primary differences, nuances, scales, uncertainties, definitions, and best practices for measurements of primary productivity derived from in situ/on-deck/laboratory radio/stable isotope incubations, dissolved oxygen concentrations (from incubations or autonomous platforms such as floats or gliders), oxygen-argon ratios, triple oxygen isotope, natural fluorescence, and FRRF/ETR/kinetic analysis. These discussions highlighted the necessity to move the community forward towards the establishment of climate-quality primary productivity measurements that follow uniform protocols, which is imperative to ensure that existing and future measurements can be compared, assimilated, and their uncertainties determined for model development and validation. The specific deliverable resulting from of this activity will be a protocol document, published in coordination with the IOCCG. This presentation will discuss the findings of the meeting, and address future activities of the working group

    System Vicarious Calibration for Ocean Color Climate Change Applications: Requirements for In Situ Data

    Get PDF
    System Vicarious Calibration (SVC) ensures a relative radiometric calibration to satellite ocean color sensors that minimizes uncertainties in the water-leaving radiance Lw derived from the top of atmosphere radiance LT. This is achieved through the application of adjustment gain-factors, g-factors, to pre-launch absolute radiometric calibration coefficients of the satellite sensor corrected for temporal changes in radiometric sensitivity. The g-factors are determined by the ratio of simulated to measured spectral LT values where the former are computed using: i. highly accurate in situ Lw reference measurements; and ii. the same atmospheric model and algorithms applied for the atmospheric correction of satellite data. By analyzing basic relations between relative uncertainties of Lw and LT, and g-factors consistently determined for the same satellite missions using different in situ data sources, this work suggests that the creation of ocean color Climate Data Records (CDRs) should ideally rely on: i. one main long-term in situ calibration system (site and radiometry) established and sustained with the objective to maximize accuracy and precision over time of g-factors and thus minimize possible biases among satellite data products from different missions; and additionally ii. unique (i.e., standardized) atmospheric model and algorithms for atmospheric correction to maximize cross-mission consistency of data products at locations different from that supporting SVC. Finally, accounting for results from the study and elements already provided in literature, requirements and recommendations for SVC sites and field radiometers radiometric measurements are streamlined

    Regional to Global Assessments of Phytoplankton Dynamics From The SeaWiFS Mission

    Get PDF
    Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone

    Calibration Plan for the Ocean Color Instrument (OCI) Engineering Test Unit

    No full text
    The basic product measured by OCI is the top-of atmosphere (TOA) radiance at different wavelengthsThree types of calibration/characterization are necessary for ocean color processing: - Prelaunch calibration/characterization (absolute/spectral calibration and image artifacts) - On-orbit calibration (solar diffuser and lunar measurements) - Vicarious calibration (in-situ measurements of water-leaving radiance

    A Diverse Assemblage of Reef Corals Thriving in a Dynamic Intertidal Reef Setting (Bonaparte Archipelago, Kimberley, Australia)

    Get PDF
    The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity) with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs), prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution

    Sea Level Variability and Change

    Get PDF
    Land surface albedo represents the fraction of solar radiation scattered backward by land surfaces. In the presence of vegetation, surface albedo results from complex nonlinear radiation transfer processes determining the amount of radiation that is scattered by the vegetation and its background, transmitted through the vegetation layer, or absorbed by the vegetation layer and its background. Anomalies in mid- and high latitude regions of the Northern Hemisphere result mainly from interannual variations in snow cover extent and duration in winter and spring. The large negative anomalies over the United States reflect the lack of snowfall and snowpack over the Rockies, the Midwest, and much of the eastern half of the country.JRC.H.7-Climate Risk Managemen

    State of the Climate in 2012

    No full text
    For the first time in serveral years, the El Nino-Southern Oscillation did not dominate regional climate conditions around the globe. A weak La Ni a dissipated to ENSOneutral conditions by spring, and while El Nino appeared to be emerging during summer, this phase never fully developed as sea surface temperatures in the eastern conditions. Nevertheless, other large-scale climate patterns and extreme weather events impacted various regions during the year. A negative phase of the Arctic Oscillation from mid-January to early February contributed to frigid conditions in parts of northern Africa, eastern Europe, and western Asia. A lack of rain during the 2012 wet season led to the worst drought in at least the past three decades for northeastern Brazil. Central North America also experienced one of its most severe droughts on record. The Caribbean observed a very wet dry season and it was the Sahel's wettest rainy season in 50 years. Overall, the 2012 average temperature across global land and ocean surfaces ranked among the 10 warmest years on record. The global land surface temperature alone was also among the 10 warmest on record. In the upper atmosphere, the average stratospheric temperature was record or near-record cold, depending on the dataset. After a 30-year warming trend from 1970 to 1999 for global sea surface temperatures, the period 2000-12 had little further trend. This may be linked to the prevalence of La Ni a-like conditions during the 21st century. Heat content in the upper 700 m of the ocean remained near record high levels in 2012. Net increases from 2011 to 2012 were observed at 700-m to 2000-m depth and even in the abyssal ocean below. Following sharp decreases in to the effects of La Ni a, sea levels rebounded to reach records highs in 2012. The increased hydrological cycle seen in recent years continued, with more evaporation in drier locations and more precipitation in rainy areas. In a pattern that has held since 2004, salty areas of the ocean surfaces and subsurfaces were anomalously salty on average, while fresher areas were anomalously fresh. Global tropical cyclone activity during 2012 was near average, with a total of 84 storms compared with the 1981-2010 average of 89. Similar to 2010 and 2011, the North Atlantic was the only hurricane basin that experienced above-normal activity. In this basin, Sandy brought devastation to Cuba and parts of the eastern North American seaboard. All other basins experienced either near-or below-normal tropical cyclone activity. Only three tropical cyclones reached Category 5 intensity-all in Bopha became the only storm in the historical record to produce winds greater than 130 kt south of 7 N. It was also the costliest storm to affect the Philippines and killed more than 1000 residents. Minimum Arctic sea ice extent in September and Northern Hemisphere snow cover extent in June both reached new record lows. June snow cover extent is now declining at a faster rate (-17.6% per decade) than September sea ice extent (-13.0% per decade). Permafrost temperatures reached record high values in northernmost Alaska. A new melt extent record occurred on 11-12 July on the Greenland ice sheet; 97% of the ice sheet showed some form of melt, four times greater than the average melt for this time of year. The climate in Antarctica was relatively stable overall. The largest maximum sea ice extent since records begain in 1978 was observed in September 2012. In the stratosphere, warm air led to the second smallest ozone hole in the past two decades. Even so, the springtime ozone layer above Antarctica likely will not return to its early 1980s state until about 2060. Following a slight decline associated with the global 2 emissions from fossil fuel combustion and cement production reached a record 9.5 +/- 0.5 Pg C in 2011 and a new record of 9.7 +/- 0.5 Pg C is estimated for 2012. Atmospheric CO2 concentrations increased by 2.1 ppm in 2012, to 392.6 ppm. In spring 2012, 2 concentration exceeded 400 ppm at 7 of the 13 Arctic observation sites. Globally, other greenhouse gases including methane and nitrous oxide also continued to rise in concentration and the combined effect now represents a 32% increase in radiative forcing over a 1990 baseline. Concentrations of most ozone depleting substances continued to fall
    corecore