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setting (Bonaparte archipelago, Kimberley, Australia)

Abstract
The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great
concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of
climatic conditions with only a small number of species considered heat-tolerant. Occasionally however,
corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the
future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals
occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia.We compare the
environmental conditions at our study site (tidal regime, SST and level of turbidity) with those experienced at
four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the
Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs),
prolonged exposure to high SST and fluctuating turbidity levels.We conclude the timing of low tide in the
coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents
and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic
impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and
resilience in this community. This assemblage provides an indication of what corals may have existed in other
nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and
disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are
optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for
exploring how species resilience is conferred in the absence of confounding factors such as pollution.
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Abstract
The susceptibility of reef-building corals to climatic anomalies is well documented and a

cause of great concern for the future of coral reefs. Reef corals are normally considered to

tolerate only a narrow range of climatic conditions with only a small number of species con-

sidered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh

reef settings and these are cause for some optimism about the future of coral reefs. Here we

document for the first time a diverse assemblage of 225 species of hard corals occurring in

the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the

environmental conditions at our study site (tidal regime, SST and level of turbidity) with those

experienced at four other more typical tropical reef locations with similar levels of diversity.

Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long

subaerial exposure times (>3.5 hrs), prolonged exposure to high SST and fluctuating turbidi-

ty levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the se-

verity of subaerial exposure, and the combination of strong currents and a naturally high

sediment regime helps to offset light and heat stress. The low level of anthropogenic impact

and proximity to the Indo-west Pacific centre of diversity are likely to further promote resis-

tance and resilience in this community. This assemblage provides an indication of what cor-

als may have existed in other nearshore locations in the past prior to widespread coastal

development, eutrophication, coral predator and disease outbreaks and coral bleaching

events. Our results call for a re-evaluation of what conditions are optimal for coral survival,

and the Bonaparte intertidal community presents an ideal model system for exploring how

species resilience is conferred in the absence of confounding factors such as pollution.
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Introduction
Reef corals tolerate only a narrow range of environmental conditions; hence widespread coral
bleaching events, coupled with land-use impacts, have resulted in rapid and progressive degra-
dation of coral reef habitats [1], [2]. Today, one third of coral species face an elevated risk of ex-
tinction [3] and those corals living in intertidal nearshore habitats are particularly threatened
[4]. In addition to direct anthropogenic impacts (i.e. habitat modification, pollution, dredging,
over-harvesting), intertidal coral communities must withstand multiple abiotic stressors in-
cluding emersion during low tide, fluctuating temperature, light and wind conditions, physical
damage from waves, and sediment and freshwater inundation [5–7]. These impacts may be
rapid and pronounced in shallow reef communities [8], [9], hence intertidal fringing reef coral
communities are increasingly impoverished [10] and often only the hardiest corals survive in
the intertidal zone [11–13].

Scleractinian corals are critical components of the coral reef ecosystem, providing the struc-
tural framework of reefs; they contribute to primary production, nutrient recycling, and pro-
vide microhabitat and a food source for a wide diversity of coral reef organisms [14]. Hence,
resource managers urgently need effective strategies to mitigate the risks imposed on corals to
safeguard coral reef ecosystems [15], [16]. One promising approach is to identify existing coral
communities that are hardened to climatic extremes and to determine how these communities
tolerate stress [17]. To date, only a small number of populations of a restricted subset of species
have been shown to tolerate climatic stress (e.g. Acropora hyacinthus in Ofu Island Lagoon,
American Samoa [18]; back reef communities in the Western Caribbean [19]; and coral com-
munities in the Persian/Arabian Gulf [20]).

In this study we examine the species composition and diversity of reef-building corals grow-
ing on intertidal fringing reef flats across three island groups in the Bonaparte Archipelago,
Kimberley, north western Australia. We compare the environmental conditions and species di-
versity of these intertidal communities with those of other shallow fringing reef communities
around Australia, and discuss how such a high diversity of coral is sustained in this dynamic
and severe environmental setting.

Methods

Ethics Statement
All necessary permits were obtained for the described field studies. A coral collection permit
was obtained from the Western Australian Fisheries Department, Permit Number—SPA 01/07.

Study Sites
The Bonaparte Archipelago is located in north western Australia (Fig. 1) and is part of the
Kimberley Bioregion [21]. The Kimberley consists of many island archipelagos with fringing
reefs, platform reefs, submerged banks and offshore atolls [22]. Low energy, macro-tidal condi-
tions characterize the region and the tidally-driven currents together with shelf position and
the distance from rivers and estuaries influences the level of turbidity [23].

Field Surveys
In this study scleractinian coral biodiversity was recorded at 23 sites across ten islands (North
and South Maret I., West Montalivet I., East Montalivet I.,Walker I., Patricia I., Berthier I.,
Albert I., Turbin I., Suffren I.) from three island groups (Maret, Berthier and Montelivet) in the
Bonaparte Archipelago (Fig. 1, Table A in S1 File). Saltwater crocodiles (Crocodylus porosus)
frequent these reefs and diving was prohibited under workplace safety regulations, hence only
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the intertidal habitat was examined, during low spring tides of 1st September–20th October
2007. Approximately 240 m2 of inner and outer reef flat and reef crest habitat was surveyed at
each site and all coral species encountered were identified in situ or collected for
later identification.

Coral diversity was surveyed using a rapid ecological assessment methodology. To deter-
mine the relative frequency of species occurrence, all species at each site were classified into
one of the following five categories of abundance: Category 1–rare (1–2 colonies); Category 2–
infrequent (3–5 colonies); Category 3–frequent (6–20 colonies); Category 4–common (21–50
colonies); and Category 5–dominant (51 or more colonies). Since accurate in-situ ID of many
coral species is not possible we collected small (5–8cm) skeletal samples which were bleached
in a 3% hypochlorite solution overnight and then air-dried and returned to the laboratory for
ID. Identifications were carried out with comparison to known and type specimens in the
Queensland Museum collection according to: [24] for Acropora and Isopora; [25] for Fungii-
dae; [26] for Psammocora; [27], [28] for Lobophylliidae, Merulinidae, Montastraeidae and
Diploastraeidae; and [29] for all taxa that have not been revised recently. Moreover, the higher-
level taxonomic classifications used in this study reflect the classifications listed in the World
Register of Marine Species http://www.marinespecies.org/ as of September 2014. New distribu-
tion records were verified by discussion with JEN Veron and with comparison to the Corals of

Fig 1. Map of study sites in the Bonaparte Archipelago, Kimberley, Australia. Individual dots indicate survey sites within the three main island groups—
Berthier (green), Maret (blue) and Montalivet (purple). Site names and details are listed in Table A of S1 File.

doi:10.1371/journal.pone.0117791.g001
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the World database: http://www.coralsoftheworld.com. Specimens have been deposited with
the Queensland Museum.

Analyses
To examine the adequacy of local sampling at the Bonaparte Archipelago, a species accumula-
tion curve was calculated using the “specaccum” function of the “vegan” library in R with jack-
knifed standard errors http://www.r-project.org/.

To assess the proportion of coral species from our study not normally found in the intertidal
zone, we looked for intertidal vs subtidal records for the same species in the Museum of Tropi-
cal Queensland database (>28,000 specimen-based records). To compare the diversity
observed in the intertidal zone in the Kimberley with that seen in other more typical reef loca-
tions, we standardized the area surveyed to 100m2 and compared this with a semi-quantitative
estimate of the level of diversity recorded elsewhere in the NE Indian Ocean to the NW Pacific
Ocean (see Table B in S1 File).

A resemblance matrix based on Bray-Curtis similarities was constructed using square-root
transformed abundance data from the 23 sites using PRIMER-E v6 [30]. Agglomerative CLUS-
TER analysis was used to group the sites according to the similarity in coral assemblage compo-
sition using group average linkage distances. We used Krustal’s non-metric multidimensional
scaling (MDS) analysis to visualize the variation between sites as a 2-D plot.

Physical Variables
Hourly tidal predictions for North Maret I. (Bonaparte Archipelago, Kimberley, Australia);
(Scott Reef, Offshore Atoll, Kimberley); Barrow I. (Pilbara, Western Australia); Lizard I.
(Northern Great Barrier Reef, Australia) and Dent I. (Whitsundays, Central Queensland, Aus-
tralia) (see Table C in S1 File for co-ordinates) were obtained from the National Tide centre of
the Australian Bureau of Meteorology for the years 2002–2014 http://www.bom.gov.au/
oceanography/projects/ntc/ntc.shtml. The average proportional occurrence of tidal amplitude
per year (2002–2014) at 1 m intervals (± SD) was plotted to compare the distribution of tidal
amplitudes between regions. The proportional occurrence of spring low tides (�2 m) at hourly
intervals for North Maret I. was also plotted to illustrate time of day and length of time intertid-
al corals are exposed to air during different lunar phases (2002–2014).

To provide environmental data we used satellite imagery captured by the MODerate resolu-
tion Imaging Spectroradiometer (MODIS) onboard NASA’s Aqua satellite. This sensor captures
imagery at many spectral bands from the visible to the far infrared (http://modis.gsfc.nasa.gov/
about/) on a near daily repeat cycle. Empirical algorithms are then applied to the spectral infor-
mation to derive geophysical parameters such as sea surface temperature (SST) [24] and the dif-
fuse down-welling attenuation coefficient {Kd(490 nm), [31]. We obtained eight day averaged
global data at 4 km spatial resolution of SST and Kd(490 nm) from http://oceandata.sci.gsfc.
nasa.gov/MODISA/Mapped/8Day/4km/ from July 2002 to June 2014. The SST data over a
12km × 12km region about a coordinate of 125.0°E/ 14.3750°S were averaged at each time
stamp to obtain a SST time series for North Maret I. The same approach was used to obtain av-
erage SST estimates for the other four locations and co-ordinates listed in Table C in S1 File.

Kd(490) is a measure of the light penetrability in the water column and as such is a proxy for
turbidity, where higher Kd(490) values pertains to lesser penetration of light into the water col-
umn and hence greater turbidity. The operational MODIS Kd(490) algorithm relies on a log-
transformed ratio between the remote sensing reflectance at 488 and 547 nm and has been
validated for oceanic waters with negligible bottom reflectance [32], [33]. Over optically shallow
waters such as in coral reefs, the large contribution of bottom reflectance to the above-water
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radiances can over-estimate parameters that rely on this spectral ratio [34], [35]. To minimize
this effect the Kd(490) values were taken over adjacent deep-water regions for each location and
averaged to obtain a time series for each location. These values should therefore be interpreted as
the average minimum turbidity at each location. Lastly, we conducted a series of one-way ANO-
VA’s to test the null hypothesis that there is a significant difference between the SST and Kd(490)
time-series values between North Maret I., and Scott Reef, Barrow I., Lizard I. and Dent I.

Results and Discussion

Species Diversity
Based on a skeletal collection of 506 corals from 23 intertidal sites, we document 225 species of
hard coral from 60 genera occurring in the northern sector of the Bonaparte Archipelago
(Table D in S1 File). Seven of these species are newly recorded fromWestern Australia (Gonio-
pora fruitcosa, Goniopora norfolkensis, Isopora crateriformis, Lobophyllia flabelliformis, Lobo-
phyllia serratus, Platygyra acuta, Stylaraea punctata) and this study extends their distribution
range from Indonesia and the NW Pacific to include the eastern Indian Ocean.

Our study provides a robust representation of the observed local species richness (see spe-
cies accumulation curve—Figure A in S1 File); however this estimate is conservative because
we only present data pertaining to species records that have been substantiated with a reference
skeletal specimen. Furthermore, intertidal coral communities contain a subset of the local di-
versity (70–90%) [13], [36] hence we estimate a further 23–68 species could be expected if sub-
tidal habitats were surveyed but further collection efforts are required to verify this.

By comparing the current intertidal records with over 28,000 specimen-based depth distri-
bution records in the Museum of Tropical Queensland we document 34 species in the intertidal
zone that have previously been recorded only from subtidal habitats (e. g. Echinopora gemma-
cea, Stylaraea punctata, Oulastrea crispata—Fig. 2f) (Table D in S1 File). Numerous other spe-
cies we recorded in this inshore habitat were only previously recorded from offshore clear
water habitats (e.g. Leptastrea pruinosa, Astreopora myriophthalma [29].

The diversity of hard corals in the three island groups of the Bonaparte Archipelago was
similar to, or higher than a semi-quantitative estimate of the level of diversity in intertidal or
shallow subtidal habitats (0–5 m depth) in other parts of the Indo-Pacific (Figure B in S1 File).
The level of diversity was similar to that estimated for inshore fringing reefs in the central sec-
tor of the Great Barrier Reef (i.e. Dent I., Border I., Whitsundays) ~ 2 decades ago [37] prior to
the well documented decline of coral cover and condition of the inshore mid to southern sec-
tions of the Great Barrier Reef [38–40].

Species richness was highest within the Maret group and peaked on the western side of
South Maret I. (n = 158) (Fig. 3). All Maret I. sites had over 120 species. The diversity of corals
at sites in the Berthier group ranged from 38–127 species, while diversity of corals at sites with-
in the Montalivet group ranged from 42–107 species. The spatial variation in the composition
of coral assemblages is clear in the 2D nmMDS plot which shows Little Brunei Bay and S. MOF
sites at Maret I. being distinctive from other sites in Maret I. (Fig. 4). There is a degree of over-
lap in the coral assemblages across the three island groups, with 11 of the sites grouping togeth-
er with 60% similarity.

Seven species were locally widespread (Pocillopora damicornis; Symphyllia recta; Acropora
hyacinthus, Galaxea astreata, Coelastrea aspera, Lobophyllia hemprichii and Stylophora pistil-
lata) and 33 other species, including five Acropora species (A. aspera, A.millepora, A. interme-
dia, A.muricata and A. valida), were present at more than ¾ of sites surveyed. There were
many rare species, seventeen of which were recorded at a single site only. One of these,
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Lobophyllia serratus, is listed as Endangered in the IUCN Red List of Threatened Species
(www.iucn.redlist.org), and Stylaraea punctata is listed as Data Deficient.

The distinctiveness of the Bonaparte intertidal coral assemblage is exemplified by the high
diversity of Acropora species living there (47 spp.) (Figure C in S1 File). Acropora are one of
the most thermally sensitive and threatened coral genera [3], and it is increasingly rare to find
diverse and abundant assemblage of Acropora on intertidal nearshore fringing reefs. On the
Great Barrier Reef for example, nearshore reefs have been classified as “non-Acropora reefs”
[41] due to the relative paucity of Acropora spp. Not only was Acropora the most diverse of the

Fig 2. A high diversity of coral thrives in the Bonaparte intertidal zone. (a) Thickets of branching
Acropora aspera and A.muricata dominate the inner reef platform at north Patricia I., (b) On low tides corals
are exposed to air for up to three and a half hours at a time, (c) A high diversity of Acropora species thrive on
the outer fringing reef platform at north Patricia I., (d) An aggregation of juvenile and subadult corals
inhabiting a steep granite cliff-face on the east side of Walker I., (e)Goniastrea coral heads dominate the
inner platform at north-west Patricia I.,(f).Oulastrea crispata a rare and distinctive species that normally
occurs subtidally was encrusting a granite boulder on the rocky shore of Walker I.

doi:10.1371/journal.pone.0117791.g002
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Fig 3. Spatial variation in the total species richness recorded at 23 sites spanning three island groups
in the Northern sector of the Bonaparte Archipelago.Maret Is. group (blue columns); Berthier Is. group
(green columns) and Montalivet Is. group (purple columns).

doi:10.1371/journal.pone.0117791.g003

Fig 4. Spatial variation in the composition of the coral assemblages at three island groups in the
Bonaparte Archipelago.Maret Group (blue dots); Berthier Group (green dots) and Montalivet Group (purple
dots). Kruskal’s non-metric multidimensional scaling (nm-MDS), using Bray-Curtis similarity index of the coral
assemblage at 23 sites based on relative abundance data. Linkages are based on weighted pair group
averages and ellipses indicate those sites with 60% similarity at P< 0.001.

doi:10.1371/journal.pone.0117791.g004
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60 genera of scleractinian coral recorded (Figure C in S1 File), but six Acropora species domi-
nated the community (Fig. 2a-c). An abundance of Acropora spp. has been reported from
other intertidal locations in the Kimberley (e.g. Turtle Reef at Talbot Bay and One-Arm Point,
Cape Leveque, in the Western Kimberley [22]) indicating this region may provide a critical ref-
uge for this increasingly threatened group of corals.

Physical Variables
Hourly tide height data from North Maret I., shows the semidiurnal patterns of the tides which
oscillate up to 8m over spring tides (Fig. 5a). When the mean proportional occurrence of tidal
heights for North Maret I. is contrasted with four other more typical reef locations (Fig. 5b-e) it
is evident tidal conditions in the vicinity of North Maret I. are more dynamic and reach ampli-
tudes up to 3m greater than those in the other more typical reef locations with a similar level of
diversity. During spring low tides (i.e. tides� 2m), corals growing on the intertidal reef plat-
form at North Maret I. are exposed to the air for up to 3.5 hours at a time (Figure D in S1 File).
However, an important physical feature of the Bonaparte Archipelago is that the spring low
tides occur in the early morning, 4am-9am, and late afternoon to early evening, 4pm–9pm
(Fig. 6). Thus, corals remain submerged over the hottest parts of the day and are, buffered from
the stresses arising from subaerial exposure. Nevertheless, even when corals are submerged,
other environmental factors come into play such as sea-surface temperatures and turbidity.

Eight-day average MODIS-derived SST from July 2002 to June 2014 shows that the average SST
at NorthMaret I. ranged from 25.2 to 34.3°C (Table 1). The maximummean summer SST over
this period was 32.2 ± 1.0°C and the minimummean winter SST was 26.5 ± 1.0°C encompassing a
range of 5.7°C. The +1°C bleaching threshold (sensuNOAACoral Reef Watch methods—see
http://coralreefwatch.noaa.gov/satellite/index.php) at NorthMaret I. is 33.2°C and our data suggest
SST remained above this threshold for two 8-day periods in January and February 2013 (Figure E
in S1 File). When compared with more typical reef locations (Fig. 7) the mean SST in the vicinity
of NorthMaret I. is significantly higher than Lizard I., Barrow I. and Dent I. but not significantly
different from Scott Reef (Table E in S1 File). While Scott Reef has succumbed to bleaching events
in the past [43], to date there is no evidence to suggest the intertidal coral communities in the Bona-
parte Archipelago have experienced a bleaching event (despite NOAA issuing numerous bleaching
alerts e.g Mar-Jun 2013). Even though this region is remote, the Bonaparte Archipelago is intermit-
tently visited by scientists (WAMuseum, Australian Institute of Marine Science, Department of
Fisheries; Cygnet Bay Research Station); tourist vessels and the Australian customs service provide
surveillance. While widespread bleaching was been reported across almost 2000 km ofWestern
Australian coastline during the summer of 2010/11 [42] there is no suggestion that the inshore
Kimberley reefs have experienced a widespread bleaching event to date.

The eight-day average of Kd(490) ranged from 0.03–0.18 m-1 at North Maret I. (Table 2). The
Kd(490) values represent natural turbidity levels at North Maret Island. They are slightly lower
than the values detected at Barrow I. (Pilbara), a location that has been exposed to a large multi-
year dredging operation [44], [45] (Figure F in S1 File) and not significantly different from Dent
Island (inshoreWhitsundays, GBR) (Table E in S1 File). There are seasonal differences in the
Kd(490) values obtained across all locations with the highest turbidity recorded inWinter at
North Maret I. (Figure G in S1 File). It is likely the similarity of summer Kd(490) values across the
locations (Table 2) reflects the effects of tropical cyclones and monsoonal storms on water quality.

Factors Driving Diversity
The findings of our preliminary comparison of regional diversity suggest that the level of coral
diversity in the Bonaparte intertidal zone is roughly equivalent to, or greater than that
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documented from other more typical shallow-water reefs in the NE Indian Ocean and Western
Pacific Ocean. It is important to note however that the environmental conditions in the Bona-
parte Archipelago are far more extreme and dynamic than these other locations. Hence the
question must be asked, how is the diversity of the Bonaparte community being sustained
when intertidal coral communities all around the world are becoming increasingly impover-
ished due to coral bleaching and sediment impacts?

Fig 5. Spatial comparison of tidal amplitude at 1 m intervals (± SD) from 2002–2014. Presented is the
proportional occurrence of tide heights for (a) North Maret I., (b) Scott Reef (c) Barrow I., (d) Lizard I, and (e)
Dent Island.

doi:10.1371/journal.pone.0117791.g005
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There are a number of possible explanations for the high diversity. Firstly, the Bonaparte
Archipelago occurs at low latitude (~14° 240 S) and in relatively close proximity to Indonesia
(~500 km) where the greatest level of reef coral diversity is documented [46]. While it is well
known that coral diversity increases towards the equator [47], [48] the diversity of corals occur-
ring in the Kimberley region has been under-represented in studies of coral biogeography and
biodiversity [49]. Hence the extent of faunal connectivity between Indonesia and NWAustralia

Fig 6. Hourly tide height data of spring low tides for North Maret I. from 2002–2014. The lengths of time
corals are exposed for each day depends upon the lunar phase (see Figure D in S1 File) and maximum low
tide exposure occurs in early morning and evening.

doi:10.1371/journal.pone.0117791.g006

Table 1. Summary statistics for SST parameters at North Maret I. in comparison to three other more typical coral reef locations (unit = °C).

North Maret I. Scott Reef Barrow I. Lizard I. Dent I.

Minimum SST 25.193 25.120 21.714 22.147 20.040

Maximum SST 34.350 32.747 32.669 32.013 30.936

Average SST 29.216 29.170 26.439 26.743 25.414

Standard Deviation SST 1.790 1.623 2.733 2.036 2.619

Max. Summer SST mean 32.208 31.607 30.114 30.450 29.384

Max. Summer SST Standard Deviation 0.978 0.692 1.302 0.817 0.732

Summer SST mean 30.389 30.225 28.570 29.124 28.401

Summer SST Standard Deviation 1.328 1.113 1.458 0.925 0.941

Min Winter SST mean 26.504 26.635 22.407 23.808 21.077

Min Winter SST Standard Deviation 0.962 0.751 0.615 0.789 0.772

Winter SST mean 27.128 27.283 23.325 24.460 22.110

Winter SST Standard Deviation 0.989 0.782 0.896 0.792 1.005

Data relate to 8-day global averages derived from the MODIS aqua satellite at a 4-km spatial resolution from July 2002 to June 2014. See Table C in S1

File for site co-ordinates.

doi:10.1371/journal.pone.0117791.t001
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has not been quantified. The Timor and Banda Seas were continuously connected over the
Quaternary via the Indonesian Throughflow Current [22] and this, coupled with our finding of
a degree of affinity between the Kimberley and Indonesian coral faunas, supports the premise
that the diversity of the Kimberley coral fauna is at least partly sustained through connections
with Indonesia.

Secondly, there is a strong link between declining water quality, proximity to urban centres
and the condition of coral reefs [50–52], hence we postulate that a low level of pollution and
development helps to explain how this remarkable diversity of coral is sustained. The Kimber-
ley region is sparsely populated with no major urban centres. In 2011 just over 34,000 people
lived in the region (423,517 km²) (http://kdc.wa.gov.au/Statistics/Census-Profiles), compared

Fig 7. Spatial comparison of sea-surface temperatures from 2002–2014. Presented is the proportional
occurrence of SST (a) North Maret I., (b) Scott Reef (c) Barrow I., (d) Lizard I, and (e) Dent Island. The red line
shows the mean max. summer SST; and the red dashed line (- - -) shows the + 1°C bleaching threshold
(sensuNOAA); the blue line shows the mean min. winter SST.

doi:10.1371/journal.pone.0117791.g007
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to 1.1 million people living in the Great Barrier Reef catchment area (425 964 km2) in the same
year [53]. The Kimberley has a large pastoral industry but only a relatively small area of land
that is irrigated or used for horticulture (http://kdc.wa.gov.au/economic-activity/agriculture).
Thus, in contrast to the east coast of Australia and in many other parts of the world [2],
[54–56] there are no major urban centres in the Kimberley, and the input of agricultural-based
nutrients and pesticides into the nearshore marine ecosystem is minimal.

Another factor likely to help explain how coral diversity is sustained is the distinctive tidal
regime. The geographic position and shelf bathymetry of the Kimberley have resulted in the re-
gion being characterized by tides that reach their maximum spring and summer amplitudes in
the early morning and late afternoon/evening (Fig. 6, Figure D in S1 File). This means that the
intertidal corals are in effect, protected from subaerial emersion and desiccation-based stresses
over the hottest parts of the day (10am-3pm). Furthermore, the apparent ability of corals to oc-
cupy a broad physiological niche may also relate to other environmental variables such as
cloud cover, turbidity and the strong currents [57], [58].

The macro-tidal conditions dictate that the inshore Kimberley region is dynamic and even
in the absence of flood or storm events, the large tides and subsequent currents create “water
boils” during spring tides, when fine sediments on the seafloor are resuspended [22]. Thus, un-
like the clear waters that characterize most coral reef ecosystems, this inshore Kimberley is
characterized by turbid water. Ordinarily, high levels of suspended sediment are thought to re-
strict light availability and prevent the settlement and colonization of coral larvae [63]. Howev-
er in the Kimberley, we postulate that the naturally high levels of suspended sediments may
actually protect the shallow water corals from solar radiation [59] by back-scattering light and
lowering the intensity of down-welling irradiance reaching the benthos [60], [61].

While tidal-driven cyclical variation in benthic irradiance could result in corals fluctuating
between states of potential light limitation, to light stress [62]; overall, the Bonaparte corals
maintain a positive energy balance. Thus in this system, the expected negative effects of heat,
light and sediment may be transient and/or accommodated due to the large tides and strong
currents which provide water movement and aeration. The Kimberley corals are also likely have
adapted to the local conditions by the enhanced production of mucus and tissue inflation [64]

Table 2. Summary statistics Kd(490) parameters at North Maret I. in comparison to three other more typical coral reef locations (unit = m-1).

North Maret I. Scott Reef Barrow I. Lizard I. Dent I.

Minimum Kd(490) 0.032 0.019 0.048 0.019 0.029

Maximum Kd(490) 0.178 0.117 0.184 0.091 0.174

Average Kd(490) 0.063 0.032 0.079 0.046 0.060

Standard Deviation Kd(490) 0.017 0.009 0.023 0.011 0.015

Winter-time Kd(490) mean 0.068 0.040 0.073 0.044 0.059

Winter-time Kd(490) Standard Deviation 0.010 0.007 0.021 0.008 0.010

Summer-time Kd(490) mean 0.061 0.029 0.086 0.048 0.060

Summer-time Kd(490) Standard Deviation 0.021 0.006 0.023 0.012 0.017

Autumn-time Kd(490) mean 0.068 0.030 0.094 0.050 0.072

Autumn-time Kd(490) Standard Deviation 0.021 0.009 0.024 0.050 0.015

Spring-time Kd(490) mean 0.055 0.027 0.065 0.043 0.052

Spring-time Kd(490) Standard Deviation 0.012 0.004 0.009 0.007 0.009

Data relate to 8-day global averages derived from the MODIS aqua satellite at a 4-km spatial resolution from July 2002 to June 2014. See Table C in S1

File for site details.

doi:10.1371/journal.pone.0117791.t002
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and/or increased levels of heterotrophic feeding [65]; or via other physiological adaptations (see
[66–69] for examples) however the traits that underpin survival remain to be explored.

Conclusion
Here we report the finding of an exceptionally diverse intertidal fringing reef community in the
Kimberly region of north-western Australia, which thrives despite extreme environmental con-
trols. The presence of this diverse community calls for a re-evaluation of what conditions are
optimal for coral survival. Our results may elicit some optimism about the future of corals reefs
because we demonstrate that in the absence of additional stressors, diverse assemblages of coral
can thrive in atypical and dynamic environmental settings. The assemblage we report here pro-
vides an indication of which corals may have existed in other nearshore locations in the past
and presents an ideal model system for exploring how resistance and resilience are conferred in
the absence of confounding factors such as pollution. In the future, genetic material from the
hardy Kimberley corals may help to boost the resilience of corals in other parts of the world
(i.e. through natural gene flow or genetic translocation and preservation [17], [70]) and may
circumvent the need to artificially design ‘smart reefs’ [71]. Nevertheless, the Kimberley coral
communities are by no means immune from climatically or anthropogenically-imposed
changes, hence ongoing local resource management and conservation action are vital.

Supporting Information
S1 File. Combined supporting information file. Table A. Details of the 23 study sites in the
Bonaparte Archipelago. Table B. Location, co-ordinates, method and approximate area sur-
veyed of our study sites and additional sites used for comparative purposes. Table C. Co-ordi-
nates for physical variables. Table D. Annotated species list. Listed are the specimen accession
numbers and site occupancy at local, group and regional scales including known depth zone
i.e.<5m (intertidal) or>5m (subtidal) based upon the specimen-based records in the Queens-
land Museum coral database. Table E. Summary of significance results from one-way analysis
of variance comparing the mean SST and Kd(490) time-series data between locations.
Figure A. Permutated species accumulation curves. The local species diversity was adequately
surveyed after approximately 20 sites were surveyed in the Bonaparte Archipelago. Figure B.
Semi-quantitative spatial comparison of coral species diversity. This figure illustrates that the
three Bonaparte Island groups (Maret I., Berthier I., and Montalivet I., in blue) have a similar
level of diversity to that estimated for other more typical and less physically extreme reef loca-
tions such as Dent I. and Border I. on the Great Barrier Reef and Christmas I., an offshore oce-
anic location in the NE Indian Ocean. The level of diversity per 100m2 is higher than Ashmore
Reef (Offshore Kimberley); Lizard I. (Northern GBR); Kosrae and Maju ro Atoll (Central Pacif-
ic) and the Red Sea. Data summarized from [37], [72–77]. Figure C. Species level diversity
within genera at the 23 intertidal survey sites. Note: 27 genera were represented by a single spe-
cies (Table D in S1 File). Figure D. Daily tidal cycle at North Maret Island on selected spring
and neap tides over our survey period in October 2007. During spring low tides (i.e. tides�
2m), corals growing on the intertidal reef platform at North Maret I. are exposed to the air for
up to 3.5 hours at a time whereas at neap tide, corals remain submerged by at least 1m of water.
See Fig. 5 for a time-series analysis showing the proportion of tides occurring at 1m intervals
from 0–1m up to 7–8m. Figure E. Time series (2002–2014) showing SST data based on 8-day
averages for 5 locations. This figure shows at North Maret I. SST surpassed the +1°C bleaching
threshold in Feb-March 2013. Figure F. Spatial comparison of Kd(490), 2002–2014. Kd(490)
represents the diffuse attenuation coefficient of down-welling irradiance at 490 nm and is used
as a measure of turbidity. Figure G. Kd(490) time series for North Maret I. from 2002–2014.
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The blue line represents the average winter turbidity level and the red represents the average
summer turbidity.
(DOC)
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