544 research outputs found

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Electromagnetic physics vectorization in the GeantV transport framework

    Get PDF
    The development of the GeantV Electromagnetic (EM) physics package has evolved following two necessary paths towards code modernization. A first phase required the revision of the main electromagnetic physics models and their implementation. The main objectives were to improve their accuracy, extend them to the new high-energy frontier posed by the Future Circular Collider (FCC) programme and allow a better adaptation to a multi-particle flow. Most of the EM physics models in GeantV have been reviewed from theoretical perspective and rewritten with vector-friendly implementations, being now available in scalar mode in the alpha release. The second phase consists of a thorough investigation on the possibility to vectorise the most CPU-intensive physics code parts, such as final state sampling. We have shown the feasibility of implementing electromagnetic physics models that take advantage of SIMD/SIMT architectures, thus obtaining gains in performance. After this phase, the time has come for the GeantV project to take a step forward towards the final proof of concept. This takes shape through the testing of the full simulation chain (transport + physics + geometry) running in vectorized mode. In this paper we will present the first benchmark results obtained after vectorizing a full set of electromagnetic physics models

    Electromagnetic physics vectorization in the GeantV transport framework

    No full text
    The development of the GeantV Electromagnetic (EM) physics package has evolved following two necessary paths towards code modernization. A first phase required the revision of the main electromagnetic physics models and their implementation. The main objectives were to improve their accuracy, extend them to the new high-energy frontier posed by the Future Circular Collider (FCC) programme and allow a better adaptation to a multi-particle flow. Most of the EM physics models in GeantV have been reviewed from theoretical perspective and rewritten with vector-friendly implementations, being now available in scalar mode in the alpha release. The second phase consists of a thorough investigation on the possibility to vectorise the most CPU-intensive physics code parts, such as final state sampling. We have shown the feasibility of implementing electromagnetic physics models that take advantage of SIMD/SIMT architectures, thus obtaining gains in performance. After this phase, the time has come for the GeantV project to take a step forward towards the final proof of concept. This takes shape through the testing of the full simulation chain (transport + physics + geometry) running in vectorized mode. In this paper we will present the first benchmark results obtained after vectorizing a full set of electromagnetic physics models

    Media Archaeology, Cultural Techniques, and the Middle Ages: An Approach to the Study of Media before the Media

    No full text

    Multiplicity dependence of light (anti-)nuclei production in p–Pb collisions at sNN=5.02 TeV

    Get PDF
    The measurement of the deuteron and anti-deuteron production in the rapidity range −1 < y < 0 as a function of transverse momentum and event multiplicity in p–Pb collisions at √sNN = 5.02 TeV is presented. (Anti-)deuterons are identified via their specific energy loss dE/dx and via their time-of- flight. Their production in p–Pb collisions is compared to pp and Pb–Pb collisions and is discussed within the context of thermal and coalescence models. The ratio of integrated yields of deuterons to protons (d/p) shows a significant increase as a function of the charged-particle multiplicity of the event starting from values similar to those observed in pp collisions at low multiplicities and approaching those observed in Pb–Pb collisions at high multiplicities. The mean transverse particle momenta are extracted from the deuteron spectra and the values are similar to those obtained for p and particles. Thus, deuteron spectra do not follow mass ordering. This behaviour is in contrast to the trend observed for non-composite particles in p–Pb collisions. In addition, the production of the rare 3He and 3He nuclei has been studied. The spectrum corresponding to all non-single diffractive p-Pb collisions is obtained in the rapidity window −1 < y < 0 and the pT-integrated yield dN/dy is extracted. It is found that the yields of protons, deuterons, and 3He, normalised by the spin degeneracy factor, follow an exponential decrease with mass number

    A Roadmap for HEP Software and Computing R&D for the 2020s

    No full text
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade

    Studying the interaction between charm and light-flavor mesons

    No full text
    International audienceThe two-particle momentum correlation functions between charm mesons (D±\mathrm{D^{*\pm}} and D±\mathrm{D}^\pm) and charged light-flavor mesons (π±\pi^{\pm} and K±^{\pm}) in all charge-combinations are measured for the first time by the ALICE Collaboration in high-multiplicity proton-proton collisions at a center-of-mass energy of s=13\sqrt{s} =13 TeV. For DK\mathrm{DK} and DK\mathrm{D^*K} pairs, the experimental results are in agreement with theoretical predictions of the residual strong interaction based on quantum chromodynamics calculations on the lattice and chiral effective field theory. In the case of Dπ\mathrm{D}\pi and Dπ\mathrm{D^*}\pi pairs, tension between the calculations including strong interactions and the measurement is observed. For all particle pairs, the data can be adequately described by Coulomb interaction only, indicating a shallow interaction between charm and light-flavor mesons. Finally, the scattering lengths governing the residual strong interaction of the Dπ\mathrm{D}\pi and Dπ\mathrm{D^*}\pi systems are determined by fitting the experimental correlation functions with a model that employs a Gaussian potential. The extracted values are small and compatible with zero

    Measurement of Ωc0\Omega^0_{\rm c} baryon production and branching-fraction ratio BR(Ωc0Ωe+νe)/BR(Ωc0Ωπ+){\rm BR(\Omega^0_c \rightarrow \Omega^- e^+\nu_e)} / {\rm BR(\Omega^0_c \rightarrow \Omega^- \pi^+)} in pp collisions at s\sqrt{s} = 13 TeV

    No full text
    International audienceThe inclusive production of the charm-strange baryon Ωc0\Omega^{0}_{\rm c} is measured for the first time via its semileptonic decay into Ωe+νe\Omega^{-}\rm e^{+}\nu_{e} at midrapidity (y<0.8|y|<0.8) in proton-proton (pp) collisions at the centre-of-mass energy s=13\sqrt{s}=13 TeV with the ALICE detector at the LHC. The transverse momentum (pTp_{\rm T}) differential cross section multiplied by the branching ratio is presented in the interval 2<pT<12 GeV/c2<p_{\rm T}<12~{\rm GeV}/c. The branching-fraction ratio BR(Ωc0Ωe+νe)/BR(Ωc0Ωπ+){\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\rm e}^{+}\nu_{\rm e})/ {\rm BR}(\Omega^0_{\rm c} \rightarrow \Omega^{-}{\pi}^{+}) is measured to be 1.12 ±\pm 0.22 (stat.) ±\pm 0.27 (syst.). Comparisons with other experimental measurements, as well as with theoretical calculations, are presented
    corecore