54 research outputs found
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
An improved method for measuring muon energy using the truncated mean of dE/dx
The measurement of muon energy is critical for many analyses in large
Cherenkov detectors, particularly those that involve separating
extraterrestrial neutrinos from the atmospheric neutrino background. Muon
energy has traditionally been determined by measuring the specific energy loss
(dE/dx) along the muon's path and relating the dE/dx to the muon energy.
Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in
dE/dx values is quite large, leading to a typical energy resolution of 0.29 in
log10(E_mu) for a muon observed over a 1 km path length in the IceCube
detector. In this paper, we present an improved method that uses a truncated
mean and other techniques to determine the muon energy. The muon track is
divided into separate segments with individual dE/dx values. The elimination of
segments with the highest dE/dx results in an overall dE/dx that is more
closely correlated to the muon energy. This method results in an energy
resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This
technique is applicable to any large water or ice detector and potentially to
large scintillator or liquid argon detectors.Comment: 12 pages, 16 figure
All-particle cosmic ray energy spectrum measured with 26 IceTop stations
We report on a measurement of the cosmic ray energy spectrum with the IceTop
air shower array, the surface component of the IceCube Neutrino Observatory at
the South Pole. The data used in this analysis were taken between June and
October, 2007, with 26 surface stations operational at that time, corresponding
to about one third of the final array. The fiducial area used in this analysis
was 0.122 km^2. The analysis investigated the energy spectrum from 1 to 100 PeV
measured for three different zenith angle ranges between 0{\deg} and 46{\deg}.
Because of the isotropy of cosmic rays in this energy range the spectra from
all zenith angle intervals have to agree. The cosmic-ray energy spectrum was
determined under different assumptions on the primary mass composition. Good
agreement of spectra in the three zenith angle ranges was found for the
assumption of pure proton and a simple two-component model. For zenith angles
{\theta} < 30{\deg}, where the mass dependence is smallest, the knee in the
cosmic ray energy spectrum was observed between 3.5 and 4.32 PeV, depending on
composition assumption. Spectral indices above the knee range from -3.08 to
-3.11 depending on primary mass composition assumption. Moreover, an indication
of a flattening of the spectrum above 22 PeV were observed.Comment: 38 pages, 17 figure
Association between dispatch of mobile stroke units and functional outcomes among patients with acute ischemic stroke in Berlin
Importance Effects of thrombolysis in acute ischemic stroke are time-dependent. Ambulances that can administer thrombolysis (mobile stroke units [MSUs]) before arriving at the hospital have been shown to reduce time to treatment. Objective To determine whether dispatch of MSUs is associated with better clinical outcomes for patients with acute ischemic stroke. Design, Setting, and Participants This prospective, nonrandomized, controlled intervention study was conducted in Berlin, Germany, from February 1, 2017, to October 30, 2019. If an emergency call prompted suspicion of stroke, both a conventional ambulance and an MSU, when available, were dispatched. Functional outcomes of patients with final diagnosis of acute cerebral ischemia who were eligible for thrombolysis or thrombectomy were compared based on the initial dispatch (both MSU and conventional ambulance or conventional ambulance only). Exposure Simultaneous dispatch of an MSU (computed tomographic scanning with or without angiography, point-of-care laboratory testing, and thrombolysis capabilities on board) and a conventional ambulance (n = 749) vs conventional ambulance alone (n = 794). Main Outcomes and Measures The primary outcome was the distribution of modified Rankin Scale (mRS) scores (a disability score ranging from 0, no neurological deficits, to 6, death) at 3 months. The coprimary outcome was a 3-tier disability scale at 3 months (none to moderate disability; severe disability; death) with tier assignment based on mRS scores if available or place of residence if mRS scores were not available. Common odds ratios (ORs) were used to quantify the association between exposure and outcome; values less than 1.00 indicated a favorable shift in the mRS distribution and lower odds of higher levels of disability. Results Of the 1543 patients (mean age, 74 years; 723 women [47%]) included in the adjusted primary analysis, 1337 (87%) had available mRS scores (primary outcome) and 1506 patients (98%) had available the 3-tier disability scale assessment (coprimary outcome). Patients with an MSU dispatched had lower median mRS scores at month 3 (1; interquartile range [IQR], 0-3) than did patients without an MSU dispatched (2; IQR, 0-3; common OR for worse mRS, 0.71; 95% CI, 0.58-0.86; P < .001). Similarly, patients with an MSU dispatched had lower 3-month coprimary disability scores: 586 patients (80.3%) had none to moderate disability; 92 (12.6%) had severe disability; and 52 (7.1%) had died vs patients without an MSU dispatched: 605 (78.0%) had none to moderate disability; 103 (13.3%) had severe disability; and 68 (8.8%) had died (common OR for worse functional outcome, 0.73, 95% CI, 0.54-0.99; P = .04). Conclusions and Relevance In this prospective, nonrandomized, controlled intervention study of patients with acute ischemic stroke in Berlin, Germany, the dispatch of mobile stroke units, compared with conventional ambulances alone, was significantly associated with lower global disability at 3 months. Clinical trials in other regions are warranted.This cohort study compares global disability at 3 months among Berlin patients with out-of-hospital ischemic stroke brought to care via a mobile stroke unit ambulance (with prehospital CT scanning with or without angiography, point-of-care laboratory testing, prehospital thrombolysis) vs conventional ambulance alone.Question Is the dispatch of mobile stroke units in the out-of-hospital setting before arriving at the hospital associated with better functional outcomes among patients with acute ischemic stroke eligible for thrombolysis or thrombectomy? Findings In this prospective nonrandomized controlled intervention study involving 1543 patients in Berlin, Germany, the dispatch of mobile stroke units in addition to conventional ambulances vs conventional ambulances alone was significantly associated with lower levels of global disability at 3 months (common odds ratio for higher modified Rankin Scale scores [ie, worse outcome], 0.71). Meaning Among patients with acute ischemic stroke in Berlin, Germany, dispatch of a mobile stroke unit was associated with lower global disability at 3 months; further research in diverse settings is needed.Clinical epidemiolog
Neutrino oscillation studies with IceCube-DeepCore
AbstractIceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed
A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors
IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors
Recommended from our members
A method for permanent disposal of CO{sub 2} in solid form
We describe a method for binding the greenhouse gas carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, and with minimal environment impact. The technique is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Initial estimates indicate that binding and disposal would impose a burden of approximately 3{cents}/kWH onto the cost of electricity. This cost could be reduced significantly in the short term by entering niche markets for various technologies for efficient extraction and thermal carbonation. In this paper, we describe some of the kinetic limitations and opportunities. The proposed disposal technique may be viewed as a sort of insurance policy in case global warming, or the perception of global warming causes severe restrictions on CO{sub 2} emissions
Recommended from our members
Binding carbon dioxide in mineral form: A critical step towards a zero-emission coal power plant
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have successfully developed the foundation for sequestration of carbon dioxide in mineral form. The purpose of this technology is to maintain the competitiveness of coal energy, even when in the future environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other sequestration methods, this is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, the goal is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. Such a technology will guarantee energy availability for many centuries even if world economic growth exceeds the most optimistic estimates. The approach differs from all others in that the authors are developing an industrial process that chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign
Recommended from our members
Magnesite disposal of carbon dioxide
In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign
Recommended from our members
The need for carbon dioxide disposal: A threat and an opportunity
Ready energy is a cornerstone of modern society. The policies outlined at the recent Kyoto conference have put in question the largest, most readily available and most cost-effective energy resource available. Even if a doubling of atmospheric CO{sub 2} is deemed acceptable, emission reductions worldwide would have to be drastic. For 10 billion people to share equally into the 1990 emission level would allow a per capita emission of 10% of the current US level. Substantial reductions in CO{sub 2} emissions to the atmosphere are unavoidable. Uncertain is the time available to accomplish this reduction. There are also reasons to be optimistic about the future of coal and other fossil fuels. Barring a surprise technological breakthrough in alternative energies, fossil energy consumption is bound to grow. Political and economic drivers even stronger than the threat of climate change favor economic growth and therefore increased energy consumption. To resolve this apparent contradiction requires new technologies that prevent CO{sub 2} generated by combustion from entering the atmosphere. The authors will outline available technologies and show how the coal industry can adapt to them
- …