84 research outputs found
PERCEPTION FIELD FOR A MOBILE DEVICE TO PROVIDE REAL-TIME DEPTH ESTIMATION FOR DETECTED OBJECTS
A mobile computing device (e.g., a mobile phone, camera, tablet computer, wearable and/or headset device) may include an integrated display device (e.g., a presence-sensitive screen) at which a user interface is presented to provide perception field functionality, which enables real-time depth estimation for static or moving objects that are detected by the mobile computing device based on sensory input from an onboard camera. In various examples, this functionality may be embodied in a portable and flexible library (e.g. Android library) that is installed on the mobile computing device. The purpose of perception field monitoring is to provide fast and efficient algorithms for spatial object mapping to enable real-time distance estimation of static and moving objects on a mobile computing device. The implementation of these algorithms may provide spatial location information of targeted objects, as well as distance information associated with objects that are detected by the device. In certain cases, mobile applications executing on the device may utilize such information to provide assistance to visually impaired users by creating audible alerts
Lobocrassins AâE: New Cembrane-Type Diterpenoids from the Soft Coral Lobophytum crassum
Five new cembrane-type diterpenoids, lobocrassins AâE (1â5), were isolated from the soft coral Lobophytum crassum. The structures of cembranes 1â5 were established by spectroscopic and chemical methods and by comparison of the spectral data with those of known cembrane analogues. Lobocrassin A (1) is the first cembranoid possessing an Îą-chloromethyl-Îą-hydroxy-Îł-lactone functionality and is the first chlorinated cembranoid from soft corals belonging to the genus Lobophytum. Lobocrassins B (2) and C (3) were found to be the stereoisomers of the known cembranes, 14-deoxycrassin (6) and pseudoplexaurol (7), respectively. Lobocrassin B (2) exhibited modest cytotoxicity toward K562, CCRF-CEM, Molt4, and HepG2 tumor cells and displayed significant inhibitory effects on the generation of superoxide anion and the release of elastase by human neutrophils
N-Glycosylation of Human R-Spondin 1 Is Required for Efficient Secretion and Stability but Not for Its Heparin Binding Ability
[[abstract]]R-spondin 1 (Rspo1) plays an essential role in stem cell biology by potentiating Wnt signaling activity. Despite the fact that Rspo1 holds therapeutic potential for a number of diseases, its biogenesis is not fully elucidated. All Rspo proteins feature two amino-terminal furin-like repeats, which are responsible for Wnt signal potentiation, and a thrombospondin type 1 (TSR1) domain that can provide affinity towards heparan sulfate proteoglycans. Using chemical inhibitors, deglycosylase and site-directed mutagenesis, we found that human Rspo1 and Rspo3 are both N-glycosylated at N137, a site near the C-terminus of the furin repeat 2 domain, and Rspo2 is N-glycosylated at N160, a position near the N-terminus of TSR1 domain. Elimination of N-glycosylation at these sites affects their accumulation in media but have no effect on the ability towards heparin. Introduction of the N-glycosylation site to Rspo2 mutant at the position homologous to N137 in Rspo1 restored full glycosylation and rescued the accumulation defect of nonglycosylated Rspo2 mutant in media. Similar effect can be observed in the N137 Rspo1 or Rspo3 mutant engineered with Rspo2 N-glycosylation site. The results highlight the importance of N-glycosylation at these two positions in efficient folding and secretion of Rspo family. Finally, we further showed that human Rspo1 is subjected to endoplasmic reticulum (ER) quality control in N-glycan-dependent manner. While N-glycan of Rspo1 plays a role in its intracellular stability, it had little effect on secreted Rspo1. Our findings provide evidence for the critical role of N-glycosylation in the biogenesis of Rspo1.[[notice]]čŁćŁĺŽ
Pairing symmetry and properties of iron-based high temperature superconductors
Pairing symmetry is important to indentify the pairing mechanism. The
analysis becomes particularly timely and important for the newly discovered
iron-based multi-orbital superconductors. From group theory point of view we
classified all pairing matrices (in the orbital space) that carry irreducible
representations of the system. The quasiparticle gap falls into three
categories: full, nodal and gapless. The nodal-gap states show conventional
Volovik effect even for on-site pairing. The gapless states are odd in orbital
space, have a negative superfluid density and are therefore unstable. In
connection to experiments we proposed possible pairing states and implications
for the pairing mechanism.Comment: 4 pages, 1 table, 2 figures, polished versio
sel-11 and cdc-42, Two Negative Modulators of LIN-12/Notch Activity in C. elegans
Background: LIN-12/Notch signaling is important for cell-cell interactions during development, and mutations resulting in constitutive LIN-12/Notch signaling can cause cancer. Loss of negative regulators of lin-12/Notch activity has the potential for influencing cell fate decisions during development and the genesis or aggressiveness of cancer. Methodology/Principal Findings: We describe two negative modulators of lin-12 activity in C. elegans. One gene, sel-11, was initially defined as a suppressor of a lin-12 hypomorphic allele; the other gene, cdc-42, is a well-studied Rho GTPase. Here, we show that SEL-11 corresponds to yeast Hrd1p and mammalian Synoviolin. We also show that cdc-42 has the genetic properties consistent with negative regulation of lin-12 activity during vulval precursor cell fate specification. Conclusions/Significance: Our results underscore the multiplicity of negative regulatory mechanisms that impact on lin-12/ Notch activity and suggest novel mechanisms by which constitutive lin-12/Notch activity might be exacerbated in cancer
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run
Peer reviewe
- âŚ