132 research outputs found

    Collective dynamics of internal states in a Bose gas

    Get PDF
    Theory for the Rabi and internal Josephson effects in an interacting Bose gas in the cold collision regime is presented. By using microscopic transport equation for the density matrix the problem is mapped onto a problem of precession of two coupled classical spins. In the absence of an external excitation field our results agree with the theory for the density induced frequency shifts in atomic clocks. In the presence of the external field, the internal Josephson effect takes place in a condensed Bose gas as well as in a non-condensed gas. The crossover from Rabi oscillations to the Josephson oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure

    Aligned silk-based 3-D architectures for contact guidance in tissue engineering

    Get PDF
    An important challenge in the biomaterials field is to mimic the structure of functional tissues via cell and extracellular matrix (ECM) alignment and anisotropy. Toward this goal, silk-based scaffolds resembling bone lamellar structure were developed using a freeze-drying technique. The structure could be controlled directly by solute concentration and freezing parameters, resulting in lamellar scaffolds with regular morphology. Different post-treatments, such as methanol, water annealing and steam sterilization, were investigated to induce water stability. The resulting structures exhibited significant differences in terms of morphological integrity, structure and mechanical properties. The lamellar thicknesses were ∼2.6 μm for the methanol-treated scaffolds and ∼5.8 μm for water-annealed. These values are in the range of those reported for human lamellar bone. Human bone marrow-derived mesenchymal stem cells (hMSC) were seeded on these silk fibroin lamellar scaffolds and grown under osteogenic conditions to assess the effect of the microstructure on cell behavior. Collagen in the newly deposited ECM was found aligned along the lamellar architectures. In the case of methanol-treated lamellar structures, the hMSC were able to migrate into the interior of the scaffolds, producing a multilamellar hybrid construct. The present morphology constitutes a useful pattern onto which hMSC cells attach and proliferate for guided formation of a highly oriented extracellular matrix.A.L.O. wishes to thank financial support from the Portuguese Foundation for Science and Technology (SFRH/BPD/39102/2007) under POCTI Program. This work was partially supported by FCT through POCTI and/or FEDER programs and by the NIH [DE017207, EB003210 and EB002520]

    Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays

    Get PDF
    Correlations among hadrons with the same electric charge produced in Z0 decays are studied using the high statistics data collected from 1991 through 1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth order are used to measure genuine particle correlations as a function of the size of phase space domains in rapidity, azimuthal angle and transverse momentum. Both all-charge and like-sign particle combinations show strong positive genuine correlations. One-dimensional cumulants initially increase rapidly with decreasing size of the phase space cells but saturate quickly. In contrast, cumulants in two- and three-dimensional domains continue to increase. The strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA, are found to reproduce reasonably well the measured second- and higher-order correlations between particles with the same charge as well as those in all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Ultrafast coherent spectroscopy

    Full text link

    Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes

    Get PDF
    Lymphoma risk is elevated for relatives with common non-Hodgkin lymphoma (NHL) subtypes, suggesting shared genetic susceptibility across subtypes. To evaluate the extent of mutual heritability among NHL subtypes and discover novel loci shared among subtypes, we analyzed data from eight genome-wide association studies within the InterLymph Consortium, including 10,629 cases and 9505 controls. We utilized Association analysis based on SubSETs (ASSET) to discover loci for subsets of NHL subtypes and evaluated shared heritability across the genome using Genome-wide Complex Trait Analysis (GCTA) and polygenic risk scores. We discovered 17 genome-wide significant loci (P < 5 × 10−8) for subsets of NHL subtypes, including a novel locus at 10q23.33 (HHEX) (P = 3.27 × 10−9). Most subset associations were driven primarily by only one subtype. Genome-wide genetic correlations between pairs of subtypes varied broadly from 0.20 to 0.86, suggesting substantial heterogeneity in the extent of shared heritability among subtypes. Polygenic risk score analyses of established loci for different lymphoid malignancies identified strong associations with some NHL subtypes (P < 5 × 10−8), but weak or null associations with others. Although our analyses suggest partially shared heritability and biological pathways, they reveal substantial heterogeneity among NHL subtypes with each having its own distinct germline genetic architecture

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    Paradoxical effects of low dose MDMA on latent inhibition in the rat

    Get PDF
    The cognitive effects of MDMA ('Ecstasy') are controversial, particularly in the case of acute administration of low doses. Latent inhibition (LI) refers to the reduction in conditioning to a stimulus that has received non-reinforced pre-exposure, an effect typically abolished by amphetamines and enhanced by antipsychotics. LI enhancement has also been shown using the 5-HT reuptake blocker sertraline. In the present study, the effects of MDMA (6 mg/kg, known to increase 5-HT release) were tested using 10 and 40 pre-exposures to produce weak and strong LI in controls, respectively. MDMA (injected twice, prior to pre-exposure and conditioning) significantly enhanced LI in that the effect was clearly demonstrated after only 10 pre-exposures, when it was absent in the saline controls. On its own such a profile of action would be consistent with a procognitive effect of MDMA mediated by increased availability of 5-HT. However, paradoxically the same MDMA treatment reduced LI in the 40 pre-exposures condition. This component of action is likely attributable to MDMA's actions on catecholaminergic systems and is consistent with other evidence of its adverse effects. Moreover, there were small but significant reductions in 5-HT in medial prefrontal cortex (mPFC) and amygdala assayed 7 days post MDMA administration (2 × 6 mg/kg, 24 h apart)
    • …
    corecore