28 research outputs found

    Twist-tailoring Coulomb correlations in van der Waals homobilayers

    Get PDF
    The recent discovery of artificial phase transitions induced by stacking monolayer materials at magic twist angles represents a paradigm shift for solid state physics. Twist-induced changes of the single-particle band structure have been studied extensively, yet a precise understanding of the underlying Coulomb correlations has remained challenging. Here we reveal in experiment and theory, how the twist angle alone affects the Coulomb-induced internal structure and mutual interactions of excitons. In homobilayers of WSe2, we trace the internal 1s-2p resonance of excitons with phase-locked mid-infrared pulses as a function of the twist angle. Remarkably, the exciton binding energy is renormalized by up to a factor of two, their lifetime exhibits an enhancement by more than an order of magnitude, and the exciton-exciton interaction is widely tunable. Our work opens the possibility of tailoring quasiparticles in search of unexplored phases of matter in a broad range of van der Waals heterostructures. The crystallographic orientation of monolayers in van der Waals multi-layers controls their electronic and optical properties. Here the authors show how the twist angle affects Coulomb correlations governing the internal structure and the mutual interaction of excitons in homobilayers of WSe2

    Link between interlayer hybridization and ultrafast charge transfer in WS2-graphene heterostructures

    Get PDF
    Ultrafast charge separation after photoexcitation is a common phenomenon in various van-der-Waals (vdW) heterostructures with great relevance for future applications in light harvesting and detection. Theoretical understanding of this phenomenon converges towards a coherent mechanism through charge transfer states accompanied by energy dissipation into strongly coupled phonons. The detailed microscopic pathways are material specific as they sensitively depend on the band structures of the individual layers, the relative band alignment in the heterostructure, the twist angle between the layers, and interlayer interactions resulting in hybridization. We used time- and angle-resolved photoemission spectroscopy combined with tight binding and density functional theory electronic structure calculations to investigate ultrafast charge separation and recombination in WS2-graphene vdW heterostructures. We identify several avoided crossings in the band structure and discuss their relevance for ultrafast charge transfer. We relate our own observations to existing theoretical models and propose a unified picture for ultrafast charge transfer in vdW heterostructures where band alignment and twist angle emerge as the most important control parameters

    Link between interlayer hybridization and ultrafast charge transfer in WS2_2-graphene heterostructures

    Get PDF
    Ultrafast charge separation after photoexcitation is a common phenomenon in various van-der-Waals (vdW) heterostructures with great relevance for future applications in light harvesting and detection. Theoretical understanding of this phenomenon converges towards a coherent mechanism through charge transfer states accompanied by energy dissipation into strongly coupled phonons. The detailed microscopic pathways are material specific as they sensitively depend on the band structures of the individual layers, the relative band alignment in the heterostructure, the twist angle between the layers, and interlayer interactions resulting in hybridization. We used time- and angle-resolved photoemission spectroscopy combined with tight binding and density functional theory electronic structure calculations to investigate ultrafast charge separation and recombination in WS2_2-graphene vdW heterostructures. We identify several avoided crossings in the band structure and discuss their relevance for ultrafast charge transfer. We relate our own observations to existing theoretical models and propose a unified picture for ultrafast charge transfer in vdW heterostructures where band alignment and twist angle emerge as the most important control parameters.Comment: 8 pages, 5 figure

    Super-resolution lightwave tomography of electronic bands in quantum materials

    Get PDF
    Searching for quantum functionalities requires access to the electronic structure, constituting the foundation of exquisite spin-valley-electronic, topological, and many-body effects. All-optical band-structure reconstruction could directly connect electronic structure with the coveted quantum phenomena if strong lightwaves transported localized electrons within preselected bands. Here, we demonstrate that harmonic sideband (HSB) generation in monolayer tungsten diselenide creates distinct electronic interference combs in momentum space. Locating these momentum combs in spectroscopy enables super-resolution tomography of key band-structure details in situ. We experimentally tuned the optical-driver frequency by a full octave and show that the predicted super-resolution manifests in a critical intensity and frequency dependence of HSBs. Our concept offers a practical, all-optical, fully three-dimensional tomography of electronic structure even in microscopically small quantum materials, band by band

    Link between interlayer hybridization and ultrafast charge transfer in WS2-graphene heterostructures

    Get PDF
    Ultrafast charge separation after photoexcitation is a common phenomenon in various van-der-Waals (vdW) heterostructures with great relevance for future applications in light harvesting and detection. Theoretical understanding of this phenomenon converges towards a coherent mechanism through charge transfer states accompanied by energy dissipation into strongly coupled phonons. The detailed microscopic pathways are material specific as they sensitively depend on the band structures of the individual layers, the relative band alignment in the heterostructure, the twist angle between the layers, and interlayer interactions resulting in hybridization. We used time- and angle-resolved photoemission spectroscopy combined with tight binding and density functional theory electronic structure calculations to investigate ultrafast charge separation and recombination in WS2-graphene vdW heterostructures. We identify several avoided crossings in the band structure and discuss their relevance for ultrafast charge transfer. We relate our own observations to existing theoretical models and propose a unified picture for ultrafast charge transfer in vdW heterostructures where band alignment and twist angle emerge as the most important control parameters

    Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Get PDF
    The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform

    Scientific Evidence and Rationale for the Development of Curcumin and Resveratrol as Nutraceutricals for Joint Health

    Get PDF
    Interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) are key cytokines that drive the production of inflammatory mediators and matrix-degrading enzymes in osteoarthritis (OA). These proinflammatory cytokines bind to their respective cell surface receptors and activate inflammatory signaling pathways culminating with the activation of nuclear factor κB (NF-κB), a transcription factor that can be triggered by a host of stress-related stimuli including, excessive mechanical stress and ECM degradation products. Once activated, NF-κB regulates the expression of many cytokines, chemokines, adhesion molecules, inflammatory mediators, and several matrix-degrading enzymes. Therefore, proinflammatory cytokines, their cell surface receptors, NF-κB and downstream signaling pathways are therapeutic targets in OA. This paper critically reviews the recent literature and outlines the potential prophylactic properties of plant-derived phytochemicals such as curcumin and resveratrol for targeting NF-κB signaling and inflammation in OA to determine whether these phytochemicals can be used as functional foods

    ICF Core Sets for chronic widespread pain

    No full text
    Objective: To report on the results of the consensus process integrating evidence from preliminary studies to develop the first version of a Comprehensive ICF Core Set and a Brief ICF Core Set for chronic widespread pain.Methods: A formal decision-making and consensus process integrating evidence gathered from preliminary studies was followed. Preliminary studies included a Delphi exercise, a systematic review and an empirical data collection. After training in the ICF and based on these preliminary studies relevant ICF categories were identified in a formal consensus process by international experts from different backgrounds.Results: The preliminary studies identified a set of 365 ICF categories at the second, third and fourth ICF levels with 143 categories on body functions, 45 on body structures, 125 on activities and participation and 125 on environmental factors. Thirty experts attended the consensus conference on chronic widespread pain (16 physicians with at least a specialization in physical and rehabilitation medicine, 4 rheumatologists, 2 psychiatrists, 5 physical therapists, one psychologist, one occupational therapist and 1 social worker). Altogether 65 second-level and 2 third-level categories were included in the Comprehensive ICF Core Set with 23 categories from the component body functions, one from body structures, 27 from activities and participation and 16 from environmental factors. The Brief ICF Core Set included a total of 24 second-level categories and 2 third-level categories with 10 on body functions, 10 on activities and participation and 6 on environmental factors. No body structures were included in the Brief ICF Core Set.Conclusion: A formal consensus process integrating evidence and expert opinion based on the ICF framework and classification led to the definition of ICF Core Sets for chronic widespread pain. Both the Comprehensive ICF Core Set and the Brief ICF Core Set were defined

    The position of solid carbon dioxide in the triboelectric series

    Get PDF
    © 2019 CSIRO. The process of releasing liquid carbon dioxide from a fire extinguisher is accompanied by a strong static charging of the plastic material making up the extinguisher discharge horn. Firefighters often report an electric shock when operating CO2 extinguishers, but the origin of this electrostatic hazard is largely unknown. Here, we begin to investigate this phenomenon, and test the hypothesis of plastic samples being tribocharged on contact with rapidly flowing solid CO2. Using Faraday pail measurements, we show that non-conductive polymers gain a net static charge when brought in and out of contact with dry ice (solid CO2). These measurements of charge sign and magnitude give indirect evidence helping to place solid CO2 for the first time on the triboelectric series. Polydimethylsiloxane (PDMS), polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC) samples acquire a negative charge when rubbed against dry ice, whereas poly(methyl methacrylate) (PMMA), glass, and nylon surfaces become positively charged. Therefore, we suggest the position of dry ice in the triboelectric series to be close to that of materials with stable cations and unstable anions, possibly locating it between PMMA and PVC

    Tailoring coulomb correlations in twisted WSe2 bilayers

    No full text
    Phase-locked few-cycle mid-infrared pulses trace how the twist angle alone renormalizes the binding energy of excitons in twisted WSe2 homobilayers by a factor of two and tunes their lifetime by a factor of twenty
    corecore