21 research outputs found

    Standard CMOS Fabrication of a Sensitive Fully Depleted Electrolyte-Insulator-Semiconductor Field Effect Transistor for Biosensor Applications

    Get PDF
    Microfabricated semiconductor devices are becoming increasingly relevant for detection of biological and chemical components. The integration of active biological materials together with sensitive transducers offers the possibility of generating highly sensitive, specific, selective and reliable biosensors. This paper presents the fabrication of a sensitive, fully depleted (FD), electrolyte-insulator-semiconductor field-effect transistor (EISFET) made with a silicon-on-insulator (SOI) wafer of a thin 10-30 nm active SOI layer. Initial results are presented for device operation in solutions and for bio-sensing. Here we report the first step towards a high volume manufacturing of a CMOS-based biosensor that will enable various types of applications including medical and environmental sensing

    Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Get PDF
    The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform

    Chekhov

    No full text
    Senior Project submitted to The Division of Languages and Literature of Bard College
    corecore