129 research outputs found

    Stress Dependence of Exciton Relaxation Processes in Cu2O

    Full text link
    A comprehensive study of the exciton relaxation processes in Cu2O has led to some surprises. We find that the ortho-para conversion rate becomes slower at high stress, and that the Auger nonradiative recombination rate increases with stress, with apparently no Auger recombination at zero stress. These results have important consequences for the pursuit of Bose-Einstein condensation of excitons in a harmonic potential.Comment: 10 figures, 1 tabl

    Mitochondrial dysfunction contributes to the senescent phenotype of IPF lung fibroblasts

    Get PDF
    Increasing evidence highlights that senescence plays an important role in idiopathic pulmonary fibrosis (IPF). This study delineates the specific contribution of mitochondria and the superoxide they form to the senescent phenotype of lung fibroblasts from IPF patients (IPF-LFs). Primary cultures of IPF-LFs exhibited an intensified DNA damage response (DDR) and were more senescent than age-matched fibroblasts from control donors (Ctrl-LFs). Furthermore, IPF-LFs exhibited mitochondrial dysfunction, exemplified by increases in mitochondrial superoxide, DNA, stress and activation of mTORC1. The DNA damaging agent etoposide elicited a DDR and augmented senescence in Ctrl-LFs, which were accompanied by disturbances in mitochondrial homoeostasis including heightened superoxide production. However, etoposide had no effect on IPF-LFs. Mitochondrial perturbation by rotenone involving sharp increases in superoxide production also evoked a DDR and senescence in Ctrl-LFs, but not IPF-LFs. Inhibition of mTORC1, antioxidant treatment and a mitochondrial targeting antioxidant decelerated IPF-LF senescence and/or attenuated pharmacologically induced Ctrl-LF senescence. In conclusion, increased superoxide production by dysfunctional mitochondria reinforces lung fibroblast senescence via prolongation of the DDR. As part of an auto-amplifying loop, mTORC1 is activated, altering mitochondrial homoeostasis and increasing superoxide production. Deeper understanding the mechanisms by which mitochondria contribute to fibroblast senescence in IPF has potentially important therapeutic implications

    Finding, Characterizing, and Classifying Variable Sources in Multi-epoch Sky Surveys: QSOs and RR Lyrae in PS1 3π data

    Get PDF
    In area and depth, the Pan-STARRS1 (PS1) 3π survey is unique among many-epoch, multi-band surveys and has enormous potential for the all-sky identification of variable sources. PS1 has observed the sky typically seven times in each of its five bands (grizy) over 3.5 years, but unlike SDSS, not simultaneously across the bands. Here we develop a new approach for quantifying statistical properties of non-simultaneous, sparse, multi-color light curves through light curve structure functions, effectively turning PS1 into a ~35-epoch survey. We use this approach to estimate variability amplitudes and timescales (ωr, τ) for all point sources brighter than rP1 = 21.5 mag in the survey. With PS1 data on SDSS Stripe 82 as "ground truth," we use a Random Forest Classifier to identify QSOs and RR Lyrae based on their variability and their mean PS1 and WISE colors. We find that, aside from the Galactic plane, QSO and RR Lyrae samples of purity ~75% and completeness ~92% can be selected. On this basis we have identified a sample of ~1,000,000 QSO candidates, as well as an unprecedentedly large and deep sample of ~150,000 RR Lyrae candidates with distances from ~10 to ~120 kpc. Within the Draco dwarf spheroidal, we demonstrate a distance precision of 6% for RR Lyrae candidates. We provide a catalog of all likely variable point sources and likely QSOs in PS1, a total of 25.8 × 106 sources

    Search for long-lived doubly charged Higgs bosons in p(p)over-bar collisions at root s=1.96 TeV

    Get PDF
    We present a search for long-lived doubly charged Higgs bosons (H+/-+/-), with signatures of high ionization energy loss and muonlike penetration. We use 292 pb(-1) of data collected in p (p) over bar collisions at root s=1.96 TeV by the CDF II detector at the Fermilab Tevatron. Observing no evidence of long-lived doubly charged particle production, we exclude H-L(+/-+/-) and H-R(+/-+/-) bosons with masses below 133 GeV/c(2) and 109 GeV/c(2), respectively. In the degenerate case we exclude H+/-+/- mass below 146 GeV/c(2). All limits are quoted at the 95% confidence level

    Measurement of the W+W- Production Cross Section in ppbar Collisions at sqrt(s)=1.96 TeV using Dilepton Events

    Get PDF
    We present a measurement of the W+W- production cross section using 184/pb of ppbar collisions at a center-of-mass energy of 1.96 TeV collected with the Collider Detector at Fermilab. Using the dilepton decay channel W+W- -> l+l-vvbar, where the charged leptons can be either electrons or muons, we find 17 candidate events compared to an expected background of 5.0+2.2-0.8 events. The resulting W+W- production cross section measurement of sigma(ppbar -> W+W-) = 14.6 +5.8 -5.1 (stat) +1.8 -3.0 (syst) +-0.9 (lum) pb agrees well with the Standard Model expectation.Comment: 8 pages, 2 figures, 2 tables. To be submitted to Physical Review Letter

    Noise-predictive decision-feedback detection for multiple-input multiple-output channels

    No full text

    High resolution simulation of recent Arctic and Antarctic stratospheric chemical ozone loss compared to observations

    Get PDF
    Simulations of polar ozone losses were performed using the three-dimensional high-resolution (1° × 1°) chemical transport model MIMOSA-CHIM. Three Arctic winters 1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached around 35% at 475K inside the vortex, as compared to more than 60% in 1999–2000. During 1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475K as compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002 Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the chosen resolution of 1° ×1° provides a better evaluation of ozone loss at the edge of the polar vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3, N2O, and NOy for winters 1999–2000 and 2002–2003 were compared with measurements on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric Clouds) particle density (from 5 × 10-3 to 10-2 cm-3) refines the agreement with in situ ozone, N2O and NOy levels. In this configuration, simulated ClO levels are increased and are in better agreement with observations in January but are overestimated by about 20% in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly increases further ClO levels especially in high solar zenith angle conditions. Comparisons of the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the end of the ozone destruction period. A slightly better agreement is obtained with the use of Burkholder et al. (1990) Cl2O2 absorption cross-sections
    corecore