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ABSTRACT

In area and depth, the Pan-STARRS1 (PS1) 3π survey is unique among many-epoch, multi-band surveys and has
enormous potential for the all-sky identification of variable sources. PS1 has observed the sky typically seven times
in each of its five bands (grizy) over 3.5 years, but unlike SDSS, not simultaneously across the bands. Here we
develop a new approach for quantifying statistical properties of non-simultaneous, sparse, multi-color light curves
through light curve structure functions, effectively turning PS1 into a ∼35-epoch survey. We use this approach to
estimate variability amplitudes and timescales (ωr, τ) for all point sources brighter than rP1=21.5 mag in the
survey. With PS1 data on SDSS Stripe 82 as “ground truth,” we use a Random Forest Classifier to identify QSOs
and RR Lyrae based on their variability and their mean PS1 and WISE colors. We find that, aside from the Galactic
plane, QSO and RR Lyrae samples of purity ∼75% and completeness ∼92% can be selected. On this basis we have
identified a sample of ∼1,000,000 QSO candidates, as well as an unprecedentedly large and deep sample of
∼150,000 RR Lyrae candidates with distances from ∼10 to ∼120 kpc. Within the Draco dwarf spheroidal, we
demonstrate a distance precision of 6% for RR Lyrae candidates. We provide a catalog of all likely variable point
sources and likely QSOs in PS1, a total of 25.8×106 sources.
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1. INTRODUCTION

Time domain astronomy is widely held as one of the
promising growth areas of astrophysics for the next decade.
Over the last decade, a number of time-domain, wide-area sky
surveys with modern digital detectors have been implemented,
such as the Palomar Transient Factory Survey (PTF, Rau
et al. 2000), Lincoln Near-Earth Asteroid Research (LINEAR,
Stokes et al. 1998), the Catalina surveys (Drake et al. 2009),
and Kepler.10 In this context, the Pan-STARRS1 survey (PS1)
3π (Chambers 2011) offers a unique combination of area, time
sampling, and depth. PS1 data have been extensively used to
find and study transient sources, such as supernovae (Rest et al.
2014) or episodic black hole accretion (Gezari et al. 2012),
focusing mostly on the many-epoch coverage in the medium-
deep fields. It also lends itself to finding and characterizing
sources of less ephemeral variability, and can do so across most
of the sky. Such sources of interest are, for example, QSOs and
variable stars, such as RR Lyrae.

PS1 is a multi-epoch survey that covered three quarters of
the sky at typically 35 epochs between 2010 and the beginning
of 2014. Yet, in any one of its five bands (gP1, rP1, iP1, zP1, yP1),
it is only a few-epoch survey, and the observations in different
bands are not taken simultaneously.

Though there are approaches for finding RR Lyrae in PS1
based on their variability properties (e.g., Abbas et al. 2014b,
2014a), there are no readily available approaches to exploit the
full information content of the data, e.g., to find, identify, and
characterize variable sources generically.
In this paper, we lay out, develop, test, and apply an

approach to characterize variable sources in a survey such as
PS1. The basic approach should also be very relevant to the
Large Synoptic Survey Telescope (LSST)11, which will also
collect non-simultaneous multi-bandtime-domain data. Our
methodology encompasses three basic steps: first, identifying
sources that clearly vary; second, characterizing their light
curves with a multi-band structure function; finally, using the
identification of variable sources to train an automatic
classifier. The last step is carried out using a Random Forest
Classifier (RFC) that takes the classification available for the
Sloan Digital Sky Survey (SDSS) Stripe 82 (S82) (Schneider
et al. 2007; Schmidt et al. 2010; Sesar et al. 2010) to classify
variable sources within PS1 3π. Throughout this analysis,
Stripe 82, which was fully observed by the PS1 survey, serves
as a testbed for many aspects of the analysis.
In the classification analysis, we focus on two classes of

astrophysical objects: QSOs and RR Lyrae. These objects have
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numerous applications. For example, the RR Lyrae can act as
tracers of the Milky Way’s stellar outskirts (Sesar et al. 2010,
2013a, 2013b) with high distance precision. Variability of
QSOs is astrophysically interesting for a variety of reasons
(Schmidt et al. 2010; Morganson et al. 2014; Hernitschek
et al. 2015), but QSO candidates may also serve as reference
sources for calibrating the astrometry of sources near the
Galactic plane. There are many other classes of variables (e.g.,
Cepheids and other pulsating variables) for which PS1 forms
an attractive database; but we do not attempt an exhaustive
variable classification in this paper.

This paper is organized as follows. In Section 2, we provide
a brief description of the PS1 survey, and the time-sampling of
its 3π sub-survey. We also describe complementary Wide-field
Infrared Survey Explorer (WISE) data that prove important
for QSO/RR Lyrae discrimination, as well as the existing
QSO and RR Lyrae classification in SDSS S82, which is
central for training an RFC. In Section 3, we describe the
methodology that takes us from PS1 light curves to QSO and
RR Lyrae candidates. We lay out the usage of statistical
variability measures, describe the approach of structure
functions and state how the classification available for SDSS
Stripe 82 helps us in classifying variable objects in PS1 3π.
In Section 4 we demonstrate, relying on Stripe 82 data as
ground truth, how well the identification and classification of
variables with PS1 data works. In particular, we quantify the
purity and completeness of various QSO and RR Lyrae
samples, as well as discuss results in areas other than Stripe 82,
e.g., the Galactic anticenter. Finally, we provide and describe a
catalog of QSO and RR Lyrae candidates across three quarters
of the sky. We discuss our results and present conclusions in
Section 5.

2. DATA

Our approach for calculating variability measures and using
them to detect and classify variable sources is based on PS1 3π
data, supported by time-averaged photometry from the WISE
survey, and sources from SDSS S82 as ground truth. In this
section, we describe the pertinent properties of these surveys.
From PS1 3π, we use the derived variability measures as well
as mean magnitudes and colors for classification.

2.1. PS1 3π Data

Pan-STARRS is a wide-field optical/near-IR survey tele-
scope system located at Haleakala Observatory on the island of
Maui in Hawaii. The PS1 survey (Kaiser et al. 2010) is
collecting multi-epoch, multi-color observations undertaking a
number of surveys, among which the PS1 3π survey
(Chambers 2011) is the largest. It has observed the entire sky
north of declination −30° in five filter bands (gP1, rP1, iP1, zP1,
yP1) with average wavelengths of 481, 617, 752, 866, and
962 nm, respectively (Stubbs et al. 2010; Tonry et al. 2012),
with a 5σ single epoch depth of about 22.0, 22.0, 21.9, 21.0,
and 19.8 mag in gP1, rP1, iP1, zP1, and yP1, respectively. In
contrast to the SDSS filters, the gP1 filter extends 20 nm
redward of gSDSS, and the zP1 filter reaches only to 920 nm. PS1
has no u band. In the near-IR, yP1 covers the region from
920 nm to 1030 nm. More detailed descriptions of these filters
and their calibration can be found in Stubbs et al. (2010) and
Tonry et al. (2012).

Roughly 56% of the PS1 telescope observing time was
dedicated to the PS1 3π survey, with an observing cadence
optimized for the detection of near-Earth asteroids and
slow-moving solar system bodies. The PS1 3π survey plan is
to observe each position four times per filter per year, where
the epochs are typically split into two pairs of exposures per
year per band (transit-time-interval (TTI) pairs) taken ∼25
minutes apart in the same band. This allows for the discovery
of moving or variable sources. The sky north of declination
−30° was planned to be observed four times in each band
pass per year (Chambers 2011). Through periods of bad
weather and telescope downtime in practice, fewer epochs were
observed.
Images are automatically processed using the survey pipeline

(Magnier et al. 2008), performing bias subtraction, flat fielding,
astrometry, photometry, as well as image stacking and
differencing. The photometric calibration of the survey is
better than one hundredth of a magnitude (Schlafly et al. 2011).
All data processing shown here is carried out under PS1

catalog processing version PV2, where the average number of
total detections per source is 55 over 3.7 years, including some
data taken in non-photometric conditions.

2.2. PS1 Object Selection and Outlier Cleaning

We perform a number of cuts on the PS1 data to remove
outliers and unreliable data. These cuts fall into two categories:
detection cuts that remove individual detections, and object
cuts that remove all detections of a source from the analysis.

2.2.1. Detection Cuts

The most important detection cut we apply is to remove data
taken in non-photometric conditions, according to Schlafly
et al. (2011), and data from any Orthogonal Transfer Array
(OTA) where the detections of bright stars on that chip are on
average over 0.02 mag too faint. These cuts remove about 30%
of detections.
The second most important detection cut we apply is to

remove observations which land on bad parts of the detector, as
indicated by having psf_qf_perfect < 0.95. This removes
about 10% of detections. Similarly important, we exclude any
observation where the point-spread function (PSF) magnitude
is inconsistent with the aperture magnitude by more than
0.1 mag or four times the estimated uncertainties, removing
10% of detections.
We remove any detections with problematic conditions

noted by the PS1 pipeline, according to the detections’ flags.
For the cleaning flags used, see Table 1 and also Magnier et al.
(2013). This eliminates only about 2% of detections.
Finally, we apply an outlier cleaning based on the z-score of

the individual measurements z m bi i i i( ( ))m s= - , where mi is
a given magnitude measurement, σi is its uncertainty, and μ(bi)
is the error-weighted mean magnitude of all measurements of
that source in its band bi. This eliminates 2% of detections, and
we limit it to eliminate at most 10% of the detections of any
individual source.
Figure 1 gives the number of epochs, as well as their

cadence, in each band after all of these cuts have been applied.
The average number of surviving epochs per source is 35 rather
than the total 55 observations.
The detection cuts we make are summarized in Table 2. We

note that if a detection has one problematic condition, it is more
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likely than not to also be affected by other problematic
conditions.

2.2.2. Object Cuts

We also exclude all detections of some objects from
consideration. To ensure that we consider only objects with

enough epochs and high enough signal to noise to be
appropriate for variability studies, we select only objects
having

(i) g r i15 , , 21.5P1 P1 P1< á ñ á ñ á ñ < , where ·á ñ is the error-
weighted mean magnitude after applying detection
cuts;

Table 1
Bit-flags Used to Exclude Bad or Low-quality Detections

FLAG NAME Hex Value Description

PM_SOURCE_MODE_FAIL 0x00000008 Fit (nonlinear) failed (non-converge, off-edge, run to zero)
PM_SOURCE_MODE_POOR 0x00000010 Fit succeeds, but low-SN or high-Chisq
PM_SOURCE_MODE_SATSTAR 0x00000080 Source model peak is above saturation
PM_SOURCE_MODE_BLEND 0x00000100 Source is a blend with other sources
PM_SOURCE_MODE_BADPSF 0x00000400 Failed to get good estimate of object’s PSF
PM_SOURCE_MODE_DEFECT 0x00000800 Source is thought to be a defect
PM_SOURCE_MODE_SATURATED 0x00001000 Source is thought to be saturated pixels (bleed trail)
PM_SOURCE_MODE_CR_LIMIT 0x00002000 Source has crNsigma above limit
PM_SOURCE_MODE_MOMENTS_FAILURE 0x00008000 Could not measure the moments
PM_SOURCE_MODE_SKY_FAILURE 0x00010000 Could not measure the local sky
PM_SOURCE_MODE_SKYVAR_FAILURE 0x00020000 Could not measure the local sky variance
PM_SOURCE_MODE_BIG_RADIUS 0x00100000 Poor moments for small radius, try large radius
PM_SOURCE_MODE_SIZE_SKIPPED 0x10000000 Size could not be determined
PM_SOURCE_MODE_ON_SPIKE 0x20000000 Peak lands on diffraction spike
PM_SOURCE_MODE_ON_GHOST 0x40000000 Peak lands on ghost or glint
PM_SOURCE_MODE_OFF_CHIP 0x80000000 Peak lands off edge of chip

Figure 1. Typical number of observations (left panels) and the observational cadence (right panels) of PS1 data after source and detection outlier cleaning. (a) Average
number of epochs in each band for processed objects around the Galactic north pole, after outlier cleaning, for 15<iP1<18 (red) and 18�iP1<21.5 (blue).
Sources having only a few epochs are found only among the faint stars. A minimum number of 10 epochs was enforced by the cleaning. Fractions in the plot are with
respect to the total number of sources within 15<iP1<18 and 18�iP1<21.5, respectively. (b) Average cadence in each band for processed objects for
15<iP1<21.5 (for 5425 objects around Galactic north pole, after outlier cleaning).
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(ii) at least 10 epochs remaining after after applying detection
cuts.

We have imposed two additional criteria to remove extended
objects, as well as objects thought to have problematic
PS1 detections:

(iii) fewer than 25% of epochs eliminated by psf_qf_per-
fect � 0.95;

(iv) fewer than 25% of epochs eliminated by ∣ap_mag -
psf_inst_mag∣ � max(4σ, 0.1).

Among sources within a magnitude range of 15 to 21.5,
these two criteria each remove about 5% of objects. This was
significantly more than expected. However, visual inspection of
a selection of affected sources indicates that these cuts were
unnecessarily restrictive. These sources could have in fact been
included in the analysis without difficulty, but for now we
accept the loss. We term this loss a “selection loss,” and note
that it means that our catalogs (QSOs, RR Lyrae, and variable
objects in general) will be missing 10% of all objects.

More than 3.88×108 objects across three quarters of the
sky survive these cuts, and we analyze the variability of all
of them.

2.3. WISE Data

WISE is a NASA infrared-wavelength astronomical space
telescope providing mid-infrared data with far greater sensi-
tivity than any previous survey. It performed an all-sky survey
with imaging in four photometric bands over 10 months
(Wright et al. 2010). Nikutta et al. (2014) have shown that the
color W W W12 1 2 0.5= - > is an excellent criterion to
isolate QSOs, because W12 is an indicator of the hot dust torus
in AGNs. To aid in the QSO identification, we want to find
objects with these unusual W12 colors, but need to make sure
that these colors are not merely a consequence of poor WISE
photometry. For objects with good measurements (σW1<0.3,
σW2<0.3), we use W12 as a parameter for classification.
1.46×108 of the 3.88×108 selected objects from Section 2.1
have reliable W12 (σW1<0.3, σW2<0.3, where σW1, σW2 are
the errors given on the WISE magnitudes).

2.4. SDSS S82 Sources

The SDSS (York et al. 2000) is a major multi-filter imaging
and spectroscopic survey using a dedicated 2.5-m wide-angle
optical telescope at Apache Point Observatory in New Mexico,
United States. The Sloan Legacy Survey covers about 7500°of
the Northern Galactic Cap in optical ugriz filters, with average
wavelengths of 355.1, 468.6, 616.5, 748.1, and 893.1 nm. In
typical seeing, it has a 95% completeness down to magnitudes
of 22.0, 22.2, 22.2, 21.3, and 20.5, for u, g, r, i, and z,
respectively. Additionally, the Sloan Legacy Survey contains
three stripes in the South Galactic Cap totaling 740 square

degrees. The central stripe in the South Galactic Cap, Stripe 82
(S82), was scanned multiple times to enable a deep co-addition
of the data and to enable discovery of variable objects. S82 has
∼60 epochs of imaging data in ugriz, taken over ∼5 years,
where extensive spectroscopy provides a reference sample of
nearly 10,000 spectroscopically confirmed quasars (Schneider
et al. 2007; Schmidt et al. 2010). For S82, there is also a sample
of 483 identified RR Lyrae available (Sesar et al. 2010).
The classification of QSOs and RR Lyrae in SDSS S82 will

be used as a ground truth. This means, they will be used as
training set for classification as well as for testing how well our
classification method works (see Section 3).
Within −50°<α<60°, −1°.25<δ<1°.25, there are

9073 QSO and 482 RR Lyrae from the samples mentioned
above. Out of these, 7633 QSOs and 415 RR Lyrae are cross-
matched to objects in our PS1 selection. We also select more
than 1.85×106 “other” objects from S82. Of these, 10% are
missing because of the cuts of Section 2.2, and the remaining
objects are outside our magnitude range of interest.

3. METHODOLOGY

In this section we describe the three steps we take to identify
and characterize variable point sources: first, determine whether
sources are variable; second, characterize their variability with
a structure function; and third, attribute classifications.
Classification is carried out using an RFC that utilizes a
training set from SDSS S82. Throughout the following steps
we assume that all data conform to the selection requirements
described in Section 2. Figure 2 illustrates the logical flow
of the methodology that is detailed in the following
subsections.

3.1. Identifying Significantly Varying Sources

We start by laying out a very generic and non-parameteric
measure for variability, simply to characterize the significance
of variability by a scalar quantity. Specifically, we define

N
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, 12 source
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ˆ ( )c
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=
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m m
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=
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where N is the total number of photometric points for one
object across all n bands, the sum over λ is over the PS1 bands
gP1, rP1, iP1, zP1, yP1, and N N ndof = - is the number of
degrees of freedom.
Assuming that most of the sources are not variable, we

expect the distribution of 2ĉ to be a unit Gaussian distribution.
In contrast, varying sources should form a “tail” of higher 2ĉ .
Figure 3 shows the normalized distribution of 2ĉ , derived from
the PS1 photometry of all selected objects in S82, with known
QSOs (blue) and known RR Lyrae (red) shown in separate
(normalized) distributions. The “other” objects have a 2ĉ -dis-
tribution close to that expected for non-varying sources (dashed
line), confirming that most sources in the sky are non-varying
(within a level of less than a few percent) and that the PS1
photometry is reliable. The QSOs and RR Lyrae appear well
separated in the normalized distibutions. However, there are
only 415 RR Lyrae and 7630 QSOs, compared to ∼1.85×106

Table 2
Cuts Used to Exclude Bad Detections

Condition
Fraction of Detections

Removed

Photometric conditions 0.29
_ _ _∣ ‐ ∣ <ap mag psf inst mag max(4×σm, 0.1) 0.10

psf_qf_perfect > 0.95 0.11
Pipeline flags (Table 1) 0.017
z z 5i median s- < 0.02
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“other” objects in SDSS S82 cross-matched to PS1 and
surviving the cuts of Section 2.2. Figure 3(b) shows how the
distribution of “other” sources superimposes the distribution
of QSOs and RR Lyrae due to the high number of “other”
sources.

Therefore, a simple criterion such as 2ĉ is insufficient to
identify QSOs or RR Lyrae. In the subsequent analysis, all
objects are used, though for RR Lyrae only, one could in
principle restrict oneself to objects with 102ĉ > without losing
completeness.

3.2. Non-simultaneous, Multi-band Structure Functions

Beyond simply establishing variability, variable sources can
and should be characterized by the amplitude of their
variability and the timescales over which they vary. A useful
and well-established tool for this is the structure function
(Hughes et al. 1992; Collier & Peterson 2001; Kozłowski et al.
2009): it gives the mean squared magnitude difference (in a
given band) between pairs of observations of some object’s
brightness (Δm) as a function of the time lag between the
observations (Δt). There are various ways to parameterize such
a structure function, and the damped random walk (DRW) is a
useful function family. For a DRW, the structure function is
specified by two parameters, τ and V ,¥ and is given by

V t V V e, 1 . 3t( )( ) ( )∣ ∣tD = - t
¥ ¥

- D

In this notation V(Δt) reflects the expectation value for the
squared magnitude difference, Δm2, among measurements
separated in time byΔt; V(Δt) is simply 2 times the expected
magnitude variance during Δt. V¥ is conventionally denoted as
ω2, and τ is called the decorrelation time of the DRW. The
source variability is then characterized by two structure
function parameters, ω and τ.
Objects of different classes typically occupy different

regions in structure function parameter space. As we show
below, the likelihood mp SF parameters( ∣ ) can be used to
select remarkably pure and complete samples of QSOs as well
as RR Lyrae, which makes selection by structure function
parameters an efficient approach for both selecting stochasti-
cally varying and periodic variable objects (Schmidt
et al. 2010).
The cadence of surveys like the SDSS provides data that

allows application of the usual single-band formulation of
structure functions. However, the cadence of PS1 3π data,
which observes in different bands at different epochs (see
Section 2), makes it necessary to extend this approach for
multi-band fitting. We need a practical approach to turn the
∼6–9 epoch PS1 light curves in each band into a ∼35 epoch
overall light curve. If objects were to vary the same way in all
observed bands, implementing such an approach would simply
amount to determining the (time-averaged) mean color of the
object and shifting the light curves in the different bands to a
common magnitude. However, in practice, most astrophysical
objects vary more at shorter wavelengths. To account for this,
the multi-band model we present here has, beyond ω and τ, a
set of temporal mean magnitude parameters in each PS1 band,
m, and it links the variability amplitudes ω(b) in different bands
b by a power law with exponent α. Specifically,

b rlog

log
, 4

b r( )
( ( ) ( )) ( )a
w w

l l
=

where λb is the effective wavelength of the band b.
To assign a likelihood to an object’s photometry, given a

structure function model, we make use of a Gaussian process
formulation for stochastic source variability. In contrast to
single-band structure function models (e.g., Rybicki & Press
1992; Zu et al. 2011; Hernitschek et al. 2015), the Gaussian
process is not applied to any particular band but instead to an
arbitrarily constructed fiducial band which can be scaled and
shifted onto the particular bands. This permits simultaneous
treatment of multiple bands, even when the bands are not
observed simultaneously at the same epochs. It is key in this

Figure 2. Logic flowchart for finding and classifying variable sources as set out
in Section 3.
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context to realize that the fiducial band is a latent variable—it is
never directly observed; only the scaled and shifted versions
are observed, where substantial measurement noise is present.

The fiducial light curve can be described with a zero-mean
and unit characteristic variance Gaussian process. That is, the
prior probability distribution function (pdf) for a set of N
fiducial “magnitudes” q that are instantiated at observed times
tn is a multivariate normal distribution:

q qp C0, , 5q( )( ) ( )=

where Cq is a N×N symmetric positive definite covariance
matrix. In the case of a DRW model, Cq is given by

C
t t

exp . 6
nn
q n n ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥t

= -
-

¢
¢

This is identical to the usual single band DRW covariance
matrix, except that we have dropped a scale factor ω2 from

Equation (6), because we have defined the fiducial band q to
have unit variance. This factor reappears in our multi-band
structure function through the scale factors that link the fiducial
band to observed bands.
We consider now a given source for which we have

N observations across Nband different bands. The data consist of
the magnitude and uncertainty vectors m and s, the times of
observation tn, and the corresponding bands bn. The source
also has Nband temporal mean magnitudes m. We define the
N×Nband matrix  so that

b b b, , , . 7N1 2( ) ( ) ( ) ( )⎡⎣ ⎤⎦m m m m= 

The likelihood of an individual measurement mn, given its
observational uncertainty σn and a value for the corresponding
fiducial magnitude qn, is found by shifting and scaling the
fiducial magnitude and adding Gaussian noise. This makes the

Figure 3. Histograms for 2ĉ of the training set’s sources after outlier cleaning; PS1 photometry in the S82 region, type from SDSS. (a) Normalized histogram,
overplotted: theoretical expectation from unit Gaussian distribution (μ=0, σ=1). The differences between the black histogram and the dashed line arises from a
combination of noise-model imperfections and the actual variability of objects. The cutoff for the variability criterion (log 0.52ĉ > , see Section 4.3) is given as a gray
line. (b) Full histogram showing how the distribution of “other” sources superimposes the distribution of QSOs and RR Lyrae due to the high number of “other”
sources.
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single-datum likelihood

p m q b m b q b, , , , 8n n n n n n n n n
2 2( ) ( )( ) ( ) ( )s w m s= +

where ω(bn) is the variability in bandpass bn relative to the unit
variability of the unobserved fiducial band.

Introducing the diagonal N×N matrix Ω, defined by
Ωii=ω(bi), the full likelihood is given by

m q m qp , , , 92( )( ∣ ) ( ) mS = W + S

where Σ is a diagonal matrix with Σii=σi. Because everything
is Gaussian, the latent fiducial magnitudes never have to be
explicitly inferred; they can all be marginalized out analyti-
cally. This marginalization leads to the likelihood given the
model, and the covariance matrix of the data:

m mp CSF parameters, , 10( ∣ ) ( ∣ ) ( ) m m=

C C . 11q 2 ( )= W W + S

This is identical to the case of a single-band DRW model,
except the rows and columns of Cq are scaled by amplitudes ω
(bn), bn( )w ¢ for the bands bn and bn¢, and a contribution from
the photometric uncertainties is added to the diagonal:

C b b
t t

exp . 12nn n n
n n

n nn
2( ) ( ) ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥w w

t
s d= -

-
+¢ ¢

¢
¢

Equations (10) through (12) provide a method for computing
the probability of any set of observed magnitudes, given their
metadata and the parameters ω(b), τ, and m.

We are primarily interested in the structure function
parameters and are relatively uninterested in the mean
magnitudes m. This is exactly the same situation as in Zu
et al. (2011). Following that work, the likelihood of the
structure function parameters, given the data, marginalized over
m, is given by:

mp C CSF parameters exp 2

13
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We note that the factor of C 1 2∣ ∣m in Equation (13) comes from
the marginalization over m. We maximize

mp SF parameters( ∣ ) to obtain best fit values of the structure
function parameters. We then obtain m as the maximum
likelihood values of m given the structure function parameters.
That is, the mean magnitudes are given by

mC C ,T 1 1 T 1( )  m = - - -

and have variance C .m

3.3. Interpolating Multi-band Light Curves with Uncertainties

One advantage of this approach is that it can be used to
predict unobserved databased on observed data. Because both
the process is Gaussian and the noise is assumed to be
Gaussian, conditional predictions of the magnitudes can be
made given the observed data and the structure function. The
analysis is exactly the same as in Rybicki & Press (1992), with

the exception that we adopt the multi-band structure function C
of Equation (12). The magnitudes mk˜ at K unmeasured times tk,
taken through bandpasses bk, conditioned on the data in hand,
are given by:

mp m m C, 15( )( )˜ ˜ ˜ ˜ ( ) m=

mX C 161˜ · · [ ] ( )n mm = + --

C Y X C X 171˜ · · ( )= - - T
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In the case of a multi-band DRW model,
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Here m̃ is the column vector of conditional predictions, m̃
and C̃ are a conditional mean vector and a conditional variance
matrix, (temporary) mean vector ν is K-dimensional, and the
matrices C̃ , X, and Y are N×N, K×N, and K×K
respectively. Vectors m and m and matrix C are defined in
Section 3.2.

3.4. Application to PS1 Data

We have described a general technique for determining
structure functions for multi-band, non-simultaneous data. The
key ingredient is a description of the ratios of the variabilities in
the different bands, which we characterize by a power law with
exponent α (Equation (4)). The other elements of the structure
function analysis—overall variability, timescale, and linear
nuisance parameters (mean magnitudes)—are the same as in
the single band case. For the case of the PS1 data at hand, it
turns out that α is poorly constrained for individual objects,
making it preferable to derive an external estimate of α from
other data (SDSS S82), and fix it for the subsequent PS1
analysis. Assuming Equation (4), we used data from SDSS S82
to derive characteristic values for α. We found α≈−0.65 for
QSOs and α≈−1.3 for RR Lyrae, both with an uncertainty of
0.01, which is in good agreement with Sesar (2012). We
experimented fitting PS1 data with both choices of α, and
obtained similarly good fits. Accordingly, we decided to adopt
a single fixed α=−0.65 throughout this analysis. This choice
of α corresponds to variability ratios ω(b)/ω(r)=1.175, 1.00,
0.88, 0.80, 0.75, where b represents the PS1 bands gP1, rP1, iP1,
zP1, and yP1.
With α fixed, our fit to each source is described by the

timescale τ, an overall variability scaled to the r band, ωr, and
the mean magnitudes m. We calculate these from the PS1
photometry of all sources within the SDSS S82 area.
Figure 4 shows for example fits to the PS1 photometry of

objects in SDSS S82: one QSO, one RR Lyrae, one “other”
variable object and one seemingly non-varying object. For each
object we show the light curve as observed in the five bands
(top panel), and the combined light curve after shifting each
band by the estimated μ(b); the structure function parameters
ωr and τ are listed for each case. Note that the QSO in Figure 4
(a) has τ of over a year, while the RR Lyrae in panel (b) has a τ
of about a day. The figure also shows the interpolated light
curves, given the observations and the structure function
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parameters, according to the technique of Rybicki &
Press (1992).

One could sensibly derive the pdf’s for the parameters ωr, τ,
and m via MCMC; however, it proved computationally easier
to calculate p m ,r( ∣ )w t based on a reasonable parameter grid,
and to do the linear optimization of the m for each grid-
point. We use a log-spaced grid of 2 log 0.5rw- < < ,
0.04<τ<5000 with 20 values evenly spaced in log ωr and
30 in log τ to find the best-fit structure function parameters on
the grid ωr,grid and τgrid. We have verified that this approxima-
tion agrees well with full MCMC runs. Figure 5 shows the
gridded log-likelihood estimates for the same four sources as in
Figure 4. The panels show the 68% CI of the log  distribution
and the maximum likelihood values of the parameters.

Figure 6 shows the distribution of variability parameters ωr

and τ, for all PS1 objects in the SDSS S82 area that survive the

magnitude cut and which have significant variability, either
satisfying 52ĉ > or 302ĉ > for objects within the stellar
locus. This figure illustrates a number of points: first, and
unrelated to variability, it shows the power of the WISE color
W W1 2- to separate QSOs from other sources (Nikutta
et al. 2014). Second, it shows that RR Lyrae and QSOs indeed
populate different areas of (ωr, τ) space. While they can only be
roughly differentiated by their amplitudes ωr, they have
dramatically different timescales τ: RR Lyrae have typical
τ∼1 day and QSOs have τ∼100–1000 days.
We note that we also explored a power-law model for the

structure function and found that it provided worse separation
between QSO, RR Lyrae, and other objects in the structure
function parameter plane. This can be explained by the cadence
of the survey, as the definition of the power law makes the
structure-function fitting more sensitive to the TTI pairs.

Figure 4. Examples of multi-band light curve models for different types of sources. In each figure, the upper panel gives the PS1 light curve data points with error bars
after outlier cleaning. The lower panel shows the light curve fit by a multi-band DRW structure function. The solid lines represent the best fit mean model light curve
Equation (16). The area between the dotted lines represents the variance Equation (17) for the r band. For ωr and τ, we use the best MCMC point-estimates of the
parameters for each source.
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Figures 3 and 6 show that the light curve parameters will be
very helpful in classifying variable sources. Yet, these figures
also show that simple cuts on some parameters will not be
optimal for differentiating object classes. A more sophisticated
machine-learning method is needed here.

3.5. Random Forest Classifier

For classifying objects based on variability measures and
mean magnitudes calculated before, we use the RFC
(implemented in Python’s scikit_learn package). Using
a training set, it will give the classification probability of a
target set’s object being of a certain class, pQSO and pRRLyrae.
However, we treat them as arbitrary numbers and not as
probabilities, and instead calculate purity and completeness of
the sample later on.

For using a RFC, a training set is needed, with observed
object parameter values as well as classification labels. We use
the classification of QSOs (Schneider et al. 2007; Schmidt
et al. 2010) and RR Lyrae (Sesar et al. 2010) in SDSS S82 as a
ground truth. Positions from SDSS S82 are cross-matched
to PS1 positions within 1 arcsec. The object selection and
outlier cleaning of Section 2.2 are applied. This results in a set

of 7633 QSO, 415 RR Lyrae and more than 1.87×106 other
objects. This “training set template” is then extended to deal
both with magnitude uncertainties and different amounts of
reddening.
As an RFC cannot deal with measurement uncertainties by

default, we deal with measurement uncertainties by extending
the “training set template” by copies of itself, sampled within
the assumed errors of the PS1 and WISE data. We take five
samples for each object in the training set, in addition to the
original one.
We additionally extend the training set to account for

uncertainties in reddening. Dereddening is done using the
reddening-based E B V( )- dust map from Schlafly et al.
(2014). We extend the training set by presenting additional
QSOs, RR Lyrae, and other objects to the classifier, where we
have artificially introduced a small dereddening error. We do
this in the following way:

(i) make E B V sample( )- drawn from Gaussian
G E B V E B V E B V, 0.1catalog catalog( ( ) ( ) ( ) )d- - = -
at the position of the training set source;

(ii) 5% chance that E B V 0sample( )- = , irrespective of
catalog entry;

Figure 5. Gridded log-likelihood estimates for the structure function parameters. The figures show the 68% CI of the of log  evaluated on the log-spaced grid for the
sources shown in Figure 4. The maximum is marked with a cross, and the values of τgrid and ωr,grid corresponding to the cross are given in the caption.
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(iii) sample new mean magnitudes in bands gP1, rP1, iP1, zP1,
yP1 for PS1, and W1, W2 from WISE within their errors;

(iv) deredden them by E B V sample( )- ;
(v) brighten magnitudes so that rPS1 after dereddening by

E B V sample( )- is the same as after dereddening
by E B V catalog( )- .

Each of the sources within the “training set template” is re-
sampled five times to make the training set. This results in a
training set having 38165 sources labeled as “QSO,” and 2075
sources labeled as “RR Lyrae” at different reddenings, and a
few million the “other” objects.

In principle, this technique could be used to train a classifier
that could robustly classify sources even at large E B V( )- . In
practice, however, our current classifier does not operate
reliably at large E B V( )- . This is because in our training set,
we use only objects on Stripe 82, where the reddening is small,
and so no objects with large reddenings, and, correspondingly,

large reddening errors, exist in the training set. We defer to
later work accurate treatment of highly reddened objects in the
plane, and focus on the lightly reddened high-latitude regions
in this paper.
When using an RFC, missing values have to be replaced by

some dummy values (“imputation”) in the training and target
sets. A common solution is replacing missing values by the
mean of the available ones. This can be done not only for
missing values, but also for unreliable values. As imputation of
the median is impractical for the way we process the data, we
had tested if an imputation of −9999.99 instead behaves
comparably. We found that using −9999.99 versus median had
no effects on our results.
In addition to imputing missing values, we use imputation

when values are considered as unreliable. Accordingly, we
impute a value of −9999.99 also in cases where σW1>0.3,
σW2>0.3, or when magnitude errors are not available.

Figure 6. Structure function parameters and colors for a subsample of 2380 QSO (blue), 362 RR Lyrae (red), 5196 “other” objects (black) surviving magnitude cut
and 52ĉ > , 302ĉ > in the stellar locus in S82. Note that for this figure we calculated the structure function parameter (ωr, τ) using an MCMC, as the discrete griding
of ωr and τ proved visually distracting. For ωr and τ, we use the best MCMC point-estimates of the parameters for each source. TheW12 color (bottom row) illustrates
how powerful WISE data are in separating QSOs from other sources (Nikutta et al. 2014). We presume that most “other” sources with W12>0.5 are indeed QSOs
missed by the SDSS classifiation. This figure was created with corner.py v1.0.0 (Foreman-Mackey et al. 2014).
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The Table 3 summarizes the parameter set being used for
the RFC.

Though the mean r band magnitude is helpful in detecting
RR Lyrae in general, we do not use it here as it introduces too
strong a bias in distance, as the training set covers only the
range 14.5rP121.5 and we want to identify candidates
fainter than 20.25 mag. Among the colors, the dereddened
i z P1( )- is a helpful gravity indicator that helps to reduce
contamination (Vickers et al. 2012).

3.6. Verification of the Method Using SDSS S82 Classification
Information

In order to test the efficacy of the selection and classification
method, we carried out detailed testing on the S82 area, using
PS1 light curves, with the object classifications from S82
(Schneider et al. 2007; Sesar et al. 2010) as the “ground truth.”
To quantify purity and completeness of our classifications, we
use S82 both as the training and validation set. A randomly
selected 50% of the 1.85×106 cleaned S82 objects is used
for creating the training set, with the other half as the
validation set.

For any one of the two categories, say RR Lyrae, we can
define a candidate sample  by the choice of a minimum
pRRLyrae. We can then calculate on the basis of the S82 ground
truth the completeness and the purity of this sample. Here,
purity is defined as the fraction of all RR Lyrae stars in  , and
the “completeness” is the fraction of actual RR Lyrae stars
contained in  . In both instances, we would expect complete-
ness to be monotonic and purity to be nearly monotonic in
pRRLyrae.

For the QSOs, analogous definitions apply. Depending
on context, we describe a sample  either by a cut on
pRRLyrae/QSO, or by the corresponding purity and completeness
of this sample as determined on Stripe 82.

Figure 7 shows precision-recall curves (Powers 2011) for the
trade-off between purity and completeness with respect to the
total cross-matched sources. These values are calculated for
sources fulfilling the criteria of having all gP1á ñ, rP1á ñ, iP1á ñ
available and between 15 and 20. We also show the case of all
sources ( g15 P1< á ñ, rP1á ñ, i 21.5P1á ñ < ) using all available
information as dashed blue lines.

The left column refers to QSO classification, the right one to
RR Lyrae classification. This figure shows that, as expected, for
small completeness the purity is maximal, while the complete-
ness is maximized with severe expense to the purity. What
compromise needs to be made between completeness and
purity in sample selection depends in detail on the science

question, but the top panels of figure 7 suggest that the purity
increases only a little at the expense of completeness, less than
80%. This may be a sensible threshold for an inclusive sample,
whenever PS1 light curves and mean colors, as well as WISE
colors are available. At the top of the horizontal axis we have
indicated the relation between completeness and pRRLyrae,
pQSO. Using probability thresholds of ∼0.05, we get purity both
for QSO and RR Lyrae at a level of 70%, and completeness at a
level of 98%. Using probability thresholds of 0.2, we get purity
at a level of 76%, completeness of 94% for both QSO and RR
Lyrae.
The different lines in the upper panels of Figure 7 illustrate

the relative importance of the different pieces of data that may
enter the classification; we have not only carried out
classification with the full parameter set from Table 3, but
also tested the cases where only color-related or variability-
related information were used.
For RR Lyrae, Figure 7 shows that the variability

information is absolutely indispensible to define a sample with
a interesting combination of purity and completeness. For
QSOs, (time-averaged) PS1 color together with WISE already
do a very good job in selecting QSOs. The PS1 variability
provides a significant, but not decisive improvement of purity
and completeness. These different precision-recall curves also
indicate what one might expect for purity and completeness,
when a particular source lacks some information, for instance, a
detection in WISE or particular PS1 bands.
Given that our training sets are finite in size, the purity and

completeness will depend in detail on the chosen training
sample. The individual lines in the lower panels of Figure 7
reflect different samplings of the training set. For a training set
of the size available in S82, the effect is noticeable, but small.
Completeness and purity may depend on the brightness of

objects under consideration. The difference between the blue
solid and dashed curves in Figure 7 shows how purity and
completeness change when using a bright sample versus using
the entire sample. For QSOs, purity and completeness are
significantly reduced, though only a little effect is evident for
RR Lyrae. The validity of these conclusions, however, depends
on the completeness of our training set at faint magnitudes; see
Section 3.7.
To test the performance of the classifier with regard to the

signal to noise of the light curves, and for RR Lyrae implicitly
their distance, we considered the purity and completeness for
objects classified through pRRLyrae�0.2, as a function of their
apparent magnitude (Figure 8).
For the S82 RR Lyrae sample, using a threshold of

pRRLyrae�0.2, we get a purity = 75%, completeness = 92%
within S82. The upper panel gives the dependence of purity
and completeness on the apparent rP1 band magnitude. The
training set consists of the RR Lyrae in the lower panel,
showing large variation in the number of sources depending on
the mean rP1 band magnitude. To account for the different
number of sources in different rP1á ñ bins, we calculate error bars
on the purity and completeness in the upper panel from the
68% confidence interval of a Poisson distribution.
According to Figure 8, we assume the purity and complete-

ness for pRRLyrae�0.2 to be constant within r15 20P1 á ñ ,
but might decrease or be affected by shot noise from the low
number of SDSS S82 RR Lyrae beyond this interval. For the
detection of faint RR Lyrae, we have to account for a loss in

Table 3
Parameter Set for the Random Forest Classifier

Parameter Description

ωr,grid,τgrid best fit structure function parameter on log-
spaced grid

2ĉ normalized χ2 statistic, see Equation (1)
g r P1( )- , r i P1( )- ,

i z P1( )- , z y P1( )-
colors from dereddened PS1 mean
magnitudes

r P1,dereddá ñ dereddened PS1 mean rP1 magnitude, only
used for calculation of pQSO

W12 W W1 2- , helps with QSO identification
i W1P1 - separates RR Lyrae from QSO
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candidates with increasing distance, as discussed in
Section 4.2.2.

3.7. Limitations of the Method

Our method of automatic source classification is subject to
several limitations. The most important of these are:

(i) mismatch between our ground-truth training set and other
regions of sky,

(ii) incompleteness of the training set, and
(iii) the inhomogeneity of the available data over the sky.

We address these limitations in the following subsection.
We train our classifier using data on SDSS S82, where

existing large catalogs of RR Lyrae and QSOs provide an

Figure 7. Trade-off between purity and completeness with respect to total cross-matched sources for different pieces of information provided to the RFC. The upper
panels show precision-recall curves when PS1 variability and PS1+WISE colors, PS1 variability and colors only, PS1 variability only, and PS1+WISE colors are
provided. There is a limited purity and completeness that can be achieved with variability only (yellow line). The numbers for purity and completeness are calculated
from bright sources in the S82 training set, having g15 P1< á ñ, rP1á ñ, i 20P1á ñ < . Calculating them instead with respect to all sources ( g15 P1< á ñ, rP1á ñ, i 21.5P1á ñ < )
produces the dashed blue lines. The lower panels show the dependence of purity and completeness on the chosen training set sources when PS1 variability and
PS1+WISE colors are provided (see Table 3). The trade-off between purity and completeness is plotted from using 10 different randomly selected training sets, as well
as their mean (thick dark blue line). This mean curve is the same as in the upper panel. At the top of the horizontal axis the relation between completeness, and
pRRLyrae, pQSO is given. For RR Lyrae, with only 415 objects in the training set, the stochasticisty is noticeable.

12

The Astrophysical Journal, 817:73 (26pp), 2016 January 20 Hernitschek et al.



almost complete sample of objects in the region. We wish to
train the classifier on this region, but apply it to other regions,
where no similar classifications already exist. In general,
however, the application of the classifier to regions other than
S82 is only justified when the region has distributions of RR
Lyrae, QSOs, and potential contaminants similar to that in S82.
Over most of the high latitude sky, this is the case, and we can
apply our technique without difficulty.

However, at low latitudes the number of contaminants is
relatively much larger than the number of RR Lyrae and QSOs
in S82, since in these regions the data include very large
numbers of metal-rich disk stars. Additionally, the data is itself
qualitatively different: the presence of reddening changes the
colors of sources, and variation in reddening as a function of
distance means that even with a perfect 2D reddening map,
dereddened colors may no longer match the true colors of
objects. Accordingly, at low latitudes we do not expect our
classifier to perform with the same purity and completeness as
at high latitudes, and our S82-based estimates of purity and
completeness will no longer apply.

The second problem with our technique is that even in high
latitude regions, our adopted training set is imperfect. This is
especially the case for our adopted QSO training set. We use
spectroscopically selected QSOs from Schmidt et al. (2010),
which are complete only down to roughly an iP1-band
magnitude limit of 21.25. Therefore, in our training set, fainter
objects are marked as non-QSOs, and our classifier learns to
discard these objects—even when they are, in fact, QSOs, as
indicated by their WISEW W1 2- color and variability. This
results in a quasar sample from our technique whose purity and
completeness is really only relative to S82 spectroscopic
quasars, rather than the underlying population of QSOs falling
in our magnitude range.

We expect that our training set is more complete for RR
Lyrae, though the very small number of distant RR Lyrae
(Figure 8) means that we would run the risk there of discarding
all distant objects as well, were it not for the fact that we do not
include the rP1-band magnitude as a parameter when classify-
ing RR Lyrae (Table 3).
A final concern with our technique is that our ability to

determine if an object is in fact a QSO or RR Lyrae depends on
what information is available for it. The purities and
completenesses we compute are properties of the entire sample
of selected objects. The assignment to classes of individual
objects within that sample may be relatively uncertain, if, for
instance, those objects lack specific PS1 colors or detections in
WISE. Figure 7 serves to show what may happen to the purity
and completeness of subsamples of objects, for which only
limited information is available.

4. RESULTS

We then applied this variability characterization and
subsequent Random Forest classification to all sources in PS1
3π, with the selection criteria discussed in Section 2.2, resulting
in a total of more than 3.88×108 classified sources. Figure 17
shows the all-sky projection of source density within the cuts
from Section 2.2. Here, we present and discuss the results of
these classifications. Throughout, we focus in our discussion on
two illustrative regimes of Galactic latitude, the north Galactic
cap and the Galactic anticenter region. Specifically we selected
the regions:

1. 0<l<360, 60<b<90 (around the Galactic north
pole), about 2800 deg2, about 12 million classified
objects

2. 165<l<195, −15<b<15 (around Galactic antic-
entre), about 900 deg2, about 20 million classified
objects.

As we consider QSOs, but also RR Lyrae, at low galactic
latitudes, a number of effects in the candidate selection are
likely to become important: first dust extinction at low latitudes
will push faint sources below the detection limit; imperfect
dereddening may lead to differing de-reddened colors; and the
training set, S82, is mostly at high galactic latitudes with low
dust, leaving the classifier imperfectly prepared for very high
level of Galactic disk star contaminants.
The large area maps of QSO candidates are shown in

Figure 9 for the north Galactic cap, in Figure 10 for the
Galactic anticenter, and in Figure 18 for the entire PS1 3π
region. The analogous maps for these three areas, but shown in
RR Lyrae candidates are shown on Figures 11, 12 and 19.
For both QSOs and RR Lyrae stars these samples of

candidates constitute by far the largest sets of high-quality
candidates, both in terms of imaging depth, sky area, and
consequently sample size, e.g., compared to Morganson et al.
(2014), who found a QSO purity of 48% and a completeness of
67% for PS1-SDSS data. All our candidates are listed in our
catalog as described in Section 4.3. In the following, all
“purity” and “completeness” given for a threshold on pQSO,
pRRLyrae refer to the case having the full parameter set from
Table 3 available and making sure the sources fulfilling the
criterion of having all gP1á ñ, rP1á ñ, iP1á ñ available and between 15
and 20.

Figure 8. Completeness and purity w.r.t. total SDSS S82 RR Lyrae as a
function of the mean rP1 band magnitude. For a threshold of pRRLyrae�0.2, we
get a purity = 75%, completeness = 92% within S82. The upper panel gives
the dependence of purity and completeness on the apparent rP1 band
magnitude. The training set consists of the RR Lyrae in the lower panel,
showing large variation in the number of sources depending on the mean rP1
band magnitude. To account for the different number of sources in different
rP1á ñ bins, we calculate error bars on the purity and completeness in the upper
panel as the 68% confidence interval of a Poisson distribution. We find purity
and completeness to be roughly constant between 15 and 20 mag. No purity
and completeness can be given for rP1>20.2, as no object beyond was
selected within S82 with a pRRLyrae�0.2.
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4.1. QSO Candidates

QSOs should be distributed isotropically across the sky, with
a mean number density of candidates, of about 20 objects per
deg2 in the magnitude range 15<mag<21.5 (Hartwick &
Schade 1990; Schneider et al. 2007; Schmidt et al. 2010). This
allows us to test the large scale homogeneity of our
classification in areas of high Galactic latitude, and it allows
us to look at the changing completeness and purity toward low
latitudes. As we expect contaminants to increase at low
latitudes, we expect many more candidates with low pQSO.
Until dust extinction and disk star contamination become
severe, we may still get an approximately uniform density of
objects with high pQSO.

Some of these expectations are borne out in the candidate
selection near the Galactic north pole: as shown in Figure 9 the
selection of candidates with pQSO�0.6, accounting for a
purity in S82 of 82% and a completeness of 75%, is uniform to
a high degree.

In regions away from the Galactic plane, we get a
homogeneous distribution of the QSO candidates. We see this
homogeneity in Figure 9 as well as in Figure 18 down to
b 10∣ ∣ ~ . When comparing the increase in the cumulative
source density between pQSO=0.6 and pQSO=1, we find an
increase of about 20 sources per deg2 (see Figure 9(b)). The
number of sources per deg2 at a given minimum pQSO is
compareable for all b 20∣ ∣ > , and compareable to S82. At
high latitudes, the increase of candidates with pQSO is similar
on and off S82, as illustrated in Figure 9. A sample selected
using a lower threshold of pQSO shows inhomogeneities caused
by contamination at almost all Galactic latitudes.
Around the Galactic anticenter (see Figure 10), the number

of sources with low pQSO per deg2 is much higher than around
the Galactic north pole, by a factor of ∼5. This higher overall
source density does not lead to an (presumably erroneous)
increase of the number of candidate objects with a high pQSO.
Indeed, the number of candidates decreases, caused by dust or

Figure 9. High latitude distribution of QSO candidates, (a) angular distribution of possible and likely QSO candidates showing their uniformity, shown in Lambert’s
Azimuthal Equal-area Projection, north polar aspect. (b) Cumulative area density of QSO candidates as function of the pQSO threshold, the vertical lines mark the
number of QSO candidates with pQSO�0.6 as well as the expected 20 QSOs per deg2. At high latitudes, the increase of candidates with pQSO is similar on and off
Stripe 82.
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varying WISE depth, to less than 2 objects per deg2 (see
Figure 10 (b)).

Across PS1ʼs entire 3π area, we find 399,132 likely QSO
candidates with pQSO�0.6 (with an expected high-latitude
purity = 82%, completeness = 75%), 892,131 candidates with
pQSO�0.2 (purity = 77%, completeness = 95%), and
1,596,319 possible candidates (purity = 0.72%, complete-
ness = 98%) with pQSO�0.05.

4.2. RR Lyrae Candidates

In this section, we present the properties of the resulting RR
Lyrae candidate sample. In particular, we test whether the
completeness and purity of our selection is good enough to
recover known halo substructure, as well as whether it can
compete with the classification from other surveys the method
is not trained on.

Figures 11, 12, and 19 present the diagnostics of our RR
Lyrae candidate identification, analogous to the figures for the
QSO candidates. Because we expect the angular and 3D
distribution of RR Lyrae to be highly structured, diagnosing the
quality of our candidate identification across PS1 3π is more
complex than for the QSOs. Even Figure 11, showing the RR
Lyrae distribution around the Galactic north pole in its top-
panel, shows gradients and structure; the overdensity seen
between l=220° and 315° is the Sagittarius (Sgr) tidal stream.
The bottom panel of Figure 11 shows that we have one very
likely RR Lyrae (pRRLyrae�0.6, purity = 88%, complete-
ness = 66%) per deg2 and two per deg2 with pRRLyrae�0.05
(purity = 71%, completeness = 98%). This fits with the
expectation of about 1–2 RR Lyrae per deg2 from SDSS S82
(Sesar et al. 2010).
At low latitudes, around the Galactic anticenter (see

Figure 12) where the total source density is five times higher,

Figure 10. Low latitude distribution of QSO candidates around the Galactic anticenter, (a) angular distribution of possible and likely QSO candidates, shown in
Mollweide projection, with a contour plot of the reddening-based E B V( )- dust map (Schlafly et al. 2014) overlayed, (b) cumulative area density of QSO candidates
as function of the pQSO threshold; the vertical lines mark the number of QSO candidates with pQSO�0.6 as well as the expected 20 QSOs per deg2. Note that at low
latitudes the number of likely QSO candidates (pQSO>0.6), is far below the expectation for an isotropic distribution; dust, varyingWISE depth, substantial reddening,
and the higher density of contaminants make the secure identification of QSOs more difficult.
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the number of RR Lyrae candidates with pRRLyrae�0.6 is
comparable, only 1–2/deg2. This may reflect the combination
of higher contamination (reducing the number of
pRRLyrae�0.6 candidates), with actual RR Lyrae in the
Galactic disk. The number of possible RR Lyrae (candidates),
with pRRLyrae�0.05 is much higher than around the Galactic
north pole, by a factor of ∼5–10, which must reflect, foremost,
increased contamination. Compared to the QSO’s, we have
chosen a more inclusive criterion for further consideration of
RR Lyrae candidates, i.e., pRRLyrae�0.05, because subsequent
period-fitting (B. Sesar et al. 2015, in preparation) can
dramatically reduce the contamination, while preserving high
completeness.

The panoptic view of the PS1-selected RR Lyrae candidates
(Figure 19) is quite striking, as it reveals how prominent the
Galactic disk and bulge are in the map of likely RR Lyrae
candidates. Note that this is in stark contrast to the large-scale

distribution of probable QSOs, whose density drops toward the
Galactic plane. Therefore, these data may, in addition to
contaminants, be revealing enormous numbers of RR Lyrae
candidates throughout the disk and the bulge. Bulge RR Lyrae
have been surveyed extensively, e.g., by OGLE (Udalski 2003);
yet, to date there have been very few studies of RR Lyrae
throughout the Galactic disk (Mateu et al. 2012). This survey
therefore represents the largest sample of Galactic disk RR
Lyrae candidates, by a wide margin. Of course, they require
extensive verification and follow-up.
We find 59,888 possible candidates with pRRLyrae�0.05

(purity = 71%, completeness = 97%) and 42,674 highly likely
halo RR Lyrae candidates at Galactic latitudes of b 20∣ ∣ > 
outside of the bulge, having pRRLyrae�0.2 (purity = 75%,
completeness = 92%).
Within b 20∣ ∣ < , where reddening and contamination mean

our method is less likely to be reliable (Section 3), we find

Figure 11. Distribution of pRRLyrae around Galactic north pole, (a) distribution of likely contaminants (pRRLyrae<0.05) and RR Lyrae candidates
(0.05�pRRLyrae�1) across the area, shown in Lambert’s Azimuthal Equal-area Projection, north polar aspect, (b) cumulative area density of RR Lyrae candidates
as function of the pRRLyrae threshold; the vertical lines mark the number of RR Lyrae candidates with pRRLyrae�0.05 as well as the expected average of 2 high latitude
RR Lyrae per deg2.
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187,393 possible RR Lyrae candidates with pRRLyrae�0.05
and 110,474 highly likely RR Lyrae candidates with
pRRLyrae�0.2. Out of them, 19,958 with pRRLyrae�0.05
and 12,967 with pRRLyrae�0.2 belong to the bulge as being in
a radius of 20° around the Galactic center. From this, we get
167,435 possible and 97,510 highly likely disk RR Lyrae
candidates outside of the bulge. Within the complete area
covered by PS1 3π, we find 247,281 possible RR Lyrae
candidates and 153,151 highly likely RR Lyrae candidates.

At higher Galactic latitudes, the PS1 3π includes sky regions
with known halo substructures or satellite galaxies that contain
RR Lyrae, and we can make use of this to verify our candidate
selection. Known structures, clusters, and satellite galaxies are
labeled12 in Figure 19. Many of them show up in the our map
of likely RR Lyrae. Note that M31 and M33 appear in these

maps, presumably because their (unreddened) Cepheids get
misintepreted as RR Lyrae by our classifier.

4.2.1. The Sagittarius Stream

The dominant substructure in the Galactic halo (aside from
the Magellanic clouds) is the Sagittarius stellar stream, with its
leading and trailing arms (Majewski et al. 2003). Already in
Figure 19, the Sagittarius stellar stream can be seen as an
overdensity crossing l=0° and l=180°. It is useful to show
the geometry of the Sagittarius stream by selecting stars near its
presumed orbital plane, and then showing a projected view of
this orbital plane. Specifically, we plot the angular and distance
distribution for RR Lyrae candidates with pRRLyrae�0.2
(formal purity = 76%, completeness = 94%) in Figure 13
using the heliocentric Sagittarius (orbital plane) coordinates

B,( ˜ ˜ )L  defined by Belokurov et al. (2014) and a distance
modulus D from the mean magnitude rá ñ. In this coordinate

Figure 12. Distribution of pRRLyrae around Galactic anticenter, (a) distribution of likely contaminants (pRRLyrae<0.05) and RR Lyrae candidates
(0.05�pRRLyrae�1) across the area, Mollweide projection, (b) cumulative area density of RR Lyrae candidates as function of the pRRLyrae threshold; the
vertical lines mark the number of RR Lyrae candidates with pRRLyrae�0.05 as well as the expected average of 2 high latitude RR Lyrae per deg2. The wide
discrepancy between the number of RR Lyrae candidates to those expected from high latitude is a combination of presumably true “disk RR Lyrae” and higher
contamination.

12 http://homepages.rpi.edu/~newbeh/mwstructure/MilkyWaySpheroidSub
structure.html
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system, the equator is aligned with the plane of the Sagittarius
trailing tail, and L̃ increases in the direction of Sagittarius
motion. The latitude axis B̃ points to the Galactic north pole.

Distances D in parsec were taken from

D 10 . 21r M 5 5rderedd( ) ( )( )= ñ - +

where r dereddá ñ is the dereddened r mean magnitude. We adopt
Mr∼MV = 0.60 mag from Sesar et al. (2010), who used the
Chaboyer (1999) M Fe HV [ ]- relation under the assumption
that the mean metallicity of RRab stars is equal to the median
metallicity of halo stars ([Fe/H]=−1.5, Ivezić et al. 2008).
As we do not distinguish between RRab and RRc stars from
our analysis, and RRab stars are most common, making up
91% of the observed RR Lyrae, we use Mr∼MV=0.60 mag
for all RR Lyrae candidates.

Figure 13, showing the RR Lyrae candidates in the
Sagittarius plane, provides a striking view of the stream, with

its trailing and leading arm to distances of about 100 kpc. We
can compare the structure in Figure 13 to Figure 6 in Belokurov
et al. (2014) as well as to Figures 6 and 17 in Law & Majewski
(2010a), which show the best-fit N-body debris model in a
triaxial halo and observational constraints from 2MASS
+SDSS for the leading and trailing arm.
We compare our results to Ruhland et al. (2011), who traced

the Sagittarius stellar stream using BHB stars and compared it
to Law & Majewski (2005). From our results, we can confirm
that there is an extension of the trailing arm at distances of
60–80 kpc from the Sun as given, e.g., by Ruhland et al.
(2011). Furthermore, we find a cloud-like overdensity at

110L̃ ~  , 5D25 kpc, that can be identified with the
Virgo overdensity. This overdensity can be seen in a number of
works (Newberg et al. 2007; Cole et al. 2008; Ruhland et al.
2011), but our RR Lyrae candidates show the three-
dimensional structure especially clearly.

4.2.2. Distance Accuracy from the Draco dSph

The Draco dwarf galaxy, at known distance and known to
contain many RR Lyrae, provides us with an opportunity to
estimate the distance precision of the RR Lyrae candidates,
using their inferred mean magnitude in the r band. As we
expect many RR Lyrae in this direction, we consider an
inclusive set of candidates with pRRLyrae�0.05. Draco is
entirely dominated by old stars, and is affected by near-
negligible reddening, which increases the likelihood of dealing
with true RR Lyrae stars as compared to the candidates seen in
the region of the Galactic disk. Out of the 272 RR Lyrae listed
by Kinemuchi et al. (2008), in 248 cases we found a cross-
matching PS1 source within our cuts, which compares well
with our 10% selection loss (Section 2.2).
Out of these, 164 have a pRRLyrae�0.05. The first panel of

Figure 14 shows their angular distribution (black points); the
second panel shows their distribution in distance D. Our result
of 75.3±4.0 kpc is in good agreement with Kinemuchi et al.
(2008), who found a distance of 82.4±5.8 kpc, and Bonanos
et al. (2004), who found a distance of 75.8±5.4 kpc.
Remarkably, the variance in our estimated distances is only
∼4 kpc, or 5% in distance. This provides us with an excellent
empirical estimate of the distance precision of RR Lyrae
candidates, before period-fitting (B. Sesar et al. 2015, in
preparation). Note that many other satellites within ∼100 kpc
also show clusters of RR Lyrae candidates (see Figure 19).
In Figure 15 we show the heliocentric distance distribution

of RR Lyrae candidates with pRRLyrae�0.05 (purity = 71%,
completeness = 97%) at Galactic latitudes b 20 .∣ ∣   Half of
them are within 20 kpc. The most distant candidates with
pRRLyrae�0.05 are ∼150 kpc away. A profile ∼D−1.5 related
to a galactocentric halo density profile ρ∼D−3.5 is overplotted
for illustrative purposes. Such a halo profile is in the ball-park
of recent determinations (Sesar et al. 2010; Deason et al. 2011;
Xue et al. 2015). Comparing this profile to the distance
distribution of our RR Lyrae candidates, we find this fits well
up to ∼80 kpc. However, a rigorous derivation of the RR Lyrae
density profile is beyond the scope of this paper.

4.2.3. Comparison to the Catalina Survey

Of course, PS1 is not the first large-area RR Lyrae survey at
high Galactic latitudes; so in selected areas, we can also
compare with previous surveys, e.g., SDSS (York et al. 2000),

Figure 13. The extent of the Sagittarius tidal stream from the distribution of
RR Lyrae candidates (pRRLyrae�0.05, purity = 71%, completeness = 97%).
The leading and trailing arm of the Sagittarius stream can be identified, as well
as several substructures up to more than 100 kpc. Distances are from distance
modulus of dereddened r band mean magnitude. The longitudes of the crossing
Galactic plane at l=14° and l=190° are marked. (a) Distribution of RR
Lyrae candidates (pRRLyrae�0.05) within ±9°of the Sagittarius plane, shown
in Sagittarius coordinates from Belokurov et al. (2014), (b) Alternative
projection of the RR Lyrae candidates in the Sagittarius tidal stream.
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Catalina (Drake et al. 2009), QUEST (Mateu et al. 2012), and
PTF (Rau et al. 2000). Having used SDSS S82 in the training
of the classifier, we focus here on the CSS (Drake et al. 2009),
which has covered the region around the Galactic north pole
down to b=30°, but only for bright sources �19 mag. CSS is
a survey program for finding new near-Earth objects, composed
of the original CSS, the Siding Spring Survey (SSS) and the
Mt. Lemmon Survey (MLS). Catalina photometry covers
objects in the range −75°<δ<70° and b 15∣ ∣  . In
addition to an asteroid search, the complete Catalina data is
analyzed for transient sources by the Catalina Real-time
Transient Survey (CRTS), resulting in catalogs of RR Lyrae
(Drake et al. 2009, 2013a, 2013b). We use this to verify and
check our RR Lyrae candidate identification, by cross-
matching in this region with respect to CSS and SSS. We
focus on the magnitude range in common between both surveys
∼15–18.5 mag.

In Figure 16, we compare our RR Lyrae candidate list with
the RR Lyrae identified by CSS. For this, we cross-match
sources from our RR Lyrae candidate list to those of CSS with
a matching distance of 5 arcsec and keep only the source with
the closest match, following position errors reported in Casetti-
Dinescu et al. (2015) which we also found for CSS.
Additionally, we cut to a magnitude range covered by both
CSS and our analysis, 15<V<18.5. In this magnitude range,
the total number of CSS RR Lyrae with b>30° is 5108. For
4879 of them, we find a PS1 source within 5 arcsec. Out of
these, 4686 have pRRLyrae�0.05, 193 have pRRLyrae<0.05,
and 229 never enter our analysis, as the PS1 source does not
fulfill the selection criteria of Section 2.2.

With respect to CSS, we get a completeness of 92% (i.e., we
find 92% of their RR Lyrae), and a cross-identified fraction of
30% (i.e., they find 30% of our sample), if we adopt the above
magnitude cuts and pRRLyrae threshold. The completeness of
92% can be explained by the 10% selection loss (Section 2.2).

When comparing to the SSS RR Lyrae, we also chose a
matching tolerance of 5 arcsec and kept only the nearest match.

Restricting to 15<V<18.5, there are 3148 RR Lyrae in the
region covered both by PS1 and SSS with −30°<δ<−15°.
Out of these, 2785 have pRRLyrae�0.05, 233 have
pRRLyrae<0.05, and 130 never enter our analysis. To assess
the cross-identified fraction, we have to consider b 15∣ ∣ > , as
SSS roughly misses b 15∣ ∣ < . The number of PS1 RR Lyrae
candidates in the overlapping region and magnitude range and
pRRLyrae�0.05 not cross-matched to SSS is 11,336. The
number of SSS RR Lyrae within these boundaries is 2725.
In total, this results into a completeness with regard to SSS

of 88%, and a cross-identified fraction of 20%.
We find 2–3 times more RR Lyrae candidates with

pRRLyrae�0.05 than the pure samples of CSS and SSS RR

Figure 14. Illustration of the distance precision for RR Lyrae candidates (pRRLyrae�0.05) shown in their distribution around Draco dSph. (a) angular distribution,
compared to that of likely contaminants, (b) distance estimates from distance modulus of dereddened rP1 band mean magnitude for RR Lyrae candidates
(pRRLyrae�0.05). The distance estimates are in good agreement with Kinemuchi et al. (2008) and Bonanos et al. (2004). Because Draco’s RR Lyrae are fainter than
most RR Lyrae in the training set, the completeness with respect to the sources found by Kinemuchi et al. (2008) is only 61%.

Figure 15. Distribution of the heliocentric distance estimates for halo RR Lyrae
candidates (pRRLyrae�0.05, b 20∣ ∣ > ). The corresponding apparent rP1 band
magnitude, with no reddening assumed, is given. Distance estimates are done
from distance modulus of dereddened rP1 band mean magnitude. The figure
shows the distances for the 59,128 out of 59,888 halo RR Lyrae candidates
having rP1 band mean magnitude available. A number density profile ∼D−3.5 is
overplotted.
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Lyrae. This is in line with our assessment of purity at such
lenient candidate criteria pRRLyrae�0.05. Taken together,
Considering CSS and SSS’s claim of 70% completeness
(Torrealba et al. 2009), our 10% selection loss as of Section 2.2,
and our purity of ∼71% at pRRLyrae�0.05, we expect about
44% of our candidates to be cross-identified in CSS or SSS;
this is close to the actual fraction of 30% for CSS within
5 arcsec. In the SSS, we obtain a lower cross-identified fraction
of 20%; this suggests that the completeness of the SSS is in fact
lower than that of the CSS.

4.3. The Catalog of Variable Sources in PS1 3π

We have processed 3.88×108 PS1 3π sources that fulfill
the cuts described in Section 2.1. From these, we provide a
catalog of all likely variable point sources in PS1 and of all
likely QSOs, a total of 25,790,103 sources. We include all
sources fulfilling the criterion of log 0.52ĉ > (see Figure 3) or
W12>0.5. The latter criterion is intended to ensure that we
provide variability statistics for almost all QSOs.

The Catalog of Variable Sources is available in its entirety in
machine-readable format in the online journal. A table structure
is shown in Table 4 for guidance regarding its form and
content.

Figure 16. Distribution of CSS sources with b>30° cross-matched to PS1 sources within 5 arcsec. (b) The 4082 sources appearing in CSS and our classification as
likely RR Lyrae having pRRLyrae�0.05, (c) the 233 sources appearing in CSS and our classification as possible RR Lyrae having pRRLyrae<0.05, (d) the 130 CSS
sources that never enter our analysis. Panel (a) shows a histogram of the distribution of sources CSS V magnitude for the subsets from panels (b) to (d).

Table 4
The Catalog of Variable Sources in PS1 3π

Column
FITS For-
mat Code Description

1 E R.A. in degrees
2 E decl. in degrees
3 E scalar variability quantity 2ĉ , Equation (1)
4 E best fit structure function parameter ωr (r band

variability amplitude) on log-spaced grid
5 E best fit structure function parameter τ (timescale)

on log-spaced grid
6 E error-weighted mean gP1 band magnitude gP1á ñ
7 E error-weighted mean rP1 band magnitude rP1á ñ
8 E error-weighted mean iP1 band magnitude iP1á ñ
9 E error-weighted mean zP1 band magnitude zP1á ñ
10 E error-weighted mean yP1 band magnitude yP1á ñ
11 E W1 – W2 color from WISE
12 E pQSO
13 E pRRLyrae

Note.Structure of the Catalog of Variable sources in PS1 3π. The Catalog of
Variable sources is available in its entirety in machine-readable format. A FITS
file is available.
(This table is available in its entirety in FITS format.)
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Figure 17. Density of processed 3.88×108 PS1 3π sources as Mollweide projection in Galactic coordinates using the healpy (https://healpy.readthedocs.org) pixelation.
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Figure 18. Distribution of the 399,132 QSO candidates (0.6�pQSO�1, purity = 82%, completeness = 75%), shown in Mollweide projection in Galactic coordinates. A contour plot of the reddening-based E B V( )-
dust map (Schlafly et al. 2014) is overlayed.
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Figure 19. Distribution of the 247,281 RR Lyrae candidates (pRRLyrae>0.05, purity = 71%, completeness = 97%), shown in Mollweide projection of Galactic coordinates. A contour plot of the reddening-based
E B V( )- dust map (Schlafly et al. 2014) is overlayed, as well as identified known objects of the Milky Way spheroid substructure and its neighborhood.
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5. DISCUSSION AND CONCLUSION

We have set out to identify, characterize and classify variable
(point) sources in the PS1 survey, the most extensive, deep,
multi-band, wide-area, multi-epoch imaging survey to date.
Because photometry in different bands of PS1 are not observed
simultaneously (as they were e.g., in SDSS), we had to develop
and implement a new methodology for the multi-band fitting of
structure functions, used to characterize non-simultaneous
multi-band light curves. This allowed us to assign to each of
almost half a billion point sources in PS1 a basic, χ2-based
variability indicator, a variability amplitude (in the rP1-band)
ωr, and a variability timescale τ.

We then focused on identifying two classes of variable
sources among these objects, QSOs and RR Lyrae stars.
Because it aids enormously in the identification of QSOs, we
also matched all sources to band W1 and W2 photometry from
the WISE space mission. To classify objects on the basis of this
mean photometry and light curves, we exploited the fact that
SDSS Stripe 82 is covered by PS1, and provides a full
inventory of QSOs and RR Lyrae in that area. We take S82
classification (QSO, RR Lyrae, and “other”) as ground truth, to
train an RFC to classify all sources in PS1 that are brighter than
21.5 mag in either gP1, rP1, or iP1.

We have not only carried out classification with the full
available parameter set using variability parameters and colors
from PS1 together with WISE colors, but also with more
restricted pieces of information, using only color-related and
only variability-related parameters. For RR Lyrae, the varia-
bility information is absolutely indispensible to define a sample
with an interesting combination of purity and completeness.

For QSOs, (time-averaged) PS1 color together with WISE
already do a good job in selecting QSOs, so PS1 variability
provides a significant, but not decisive improvement of purity
and completeness. On the other hand, this means that the
variability information together with optical color can help for
QSO identification when no other information is available.

As the treatment of reddening is limited right now, care must
be taken applying any values of purity and completeness to
regions of high reddenings.

One important limitation of our classification is that it relies
on SDSS Stripe 82; while this area covers a wide range in
Galactic latitude, 20°<b<70°, we have no training in the
galactic plane. While the number of very likely candidates,
pQSO/RRLyrae>0.2, drops near the galactic plane, the number
of plausible candidates, pQSO/RRLyrae>0.05, does not. This
implies, unsurprisingly, that we are likely to have considerably
higher contaminations, at least in the pQSO/RRLyrae>0.05-
sample than our tests in S82 would imply. The purity of low-
latitude samples must be settled with follow-up observations
and analysis. However, at high galactic latitudes, PS1 appears
to remain quite complete in its selection to nearly rP1∼21,
which enables candidate selection to nearly ∼140 kpc.

Across the entire 3π, we identified 247,281 RR Lyrae
candidates in PS1 with pRRLyrae�0.05. Based on the training
in S82, we expect a purity (based on S82) of 71%, and
completeness of 98% among cross-matched sources; 10% of
the sources will be missing because of the selection loss (see
Section 2.2). As mentioned above, these numbers on purity and
completeness only apply away from the Galactic plane, and the
bulge. Increasing the threshold to the more stringent criteria of
pRRLyrae�0.2, reduces the sample to 153,151 sources.

The S82 training would make us believe that this should
boost the purity to 75% with only a slightly lower completeness
of 92%. The fact that nearly 100,000 candidates fall out of the
sample between the two cuts of (pRRLyrae�0.05 and
pRRLyrae�0.2) shows that the purity in the pRRLyrae�0.05
sample must be overestimated. This is most likely because
there is not only dust, but also higher, and unmodeled,
contamination in the Galactic plane.
With this caveat on the low-latitude sample purity, the

spatial distribution of RR Lyrae candidates is as follows:
Within b 20∣ ∣ < , i.e., near the disk, we find 187,393 possible
RR Lyrae candidates with pRRLyrae�0.05 and 110,477 RR
Lyrae candidates with pRRLyrae�0.2. Of them, 19,958 with
pRRLyrae�0.05 and 12,967 with pRRLyrae�0.2 may be in the
bulge as being in a radius of 20° around the Galactic center.
Here we refer to the selection cuts in the parameter pRRLyrae,
because the mapping to purity and completeness in S82 may
not apply at such low latitudes. In the Galactic halo, at Galactic
latitudes of b 20∣ ∣ >  we have 59,888 candidates with
pRRLyrae�0.05, some extending to distances as large as
∼140 kpc.
This is the most extensive and faintest RR Lyrae candidate

sample to date, extending to considerably fainter magnitudes
than e.g., the CRTS sample of RR Lyrae stars. Using the RR
Lyrae in Draco, we show that distances derived from rP1á ñ and
Mr = 0.6 we get distance precisions of 6% at a distance of
∼80 kpc. A projection of our candidate sample into the orbital
plane of the Sagittarius stream reveals the stream morphology
clearly. This shows that this sample will be excellent for
mapping stellar (sub-)structure in the Galactic halo.
We have selected 399,132 likely QSO candidates over the

total PS1 3π area at a level of purity of 82%, completeness of
75%, and 1,596,319 possible candidates at a level of purity of
72%, completeness of 98%. The selection of candidates is
homogeneous to a high degree away from the Galactic plane.
At b 20∣ ∣ > , we find 784,233 candidates with pQSO�0.2 and
356,732 candidates with pQSO�0.6. The selection of
candidates is homogeneous to a high degree away from the
Galactic plane. Around the plane, the number density of QSO
candidates with high pQSO decreases because of dust.
Overall, this work has resulted in estimation of variability

parameters and mean magnitudes for more than 3.88×108

sources, and a catalog of variable sources of almost 2.58×107

objects, being available as a 3π value-added catalog. These
parameters of course allow the source classification based on
different training sets than the one presented here.
These results of PS1 3π variability studies in the MW

context offer the possibility for all-sky detection of variable
sources and will enable us to use RR Lyrae to precise distance
estimates for finding streams and satellites. QSO candidates
will be used as a reference frame for Milky Way astrometry, to
get absolute proper motions and study Milky Way disk
kinematics.
Candidates of periodic variables can be processed further to

increase their purity. As approaches for period finding and
fitting are very computationally expensive, it needs to be
applied to pre-selected candidates (see B. Sesar et al. 2015, in
preparation; VanderPlas & Ivezić 2015).
Several approaches for detecting period light curve signals

exist for well-sampled single-band data (e.g., Sesar et al. 2010;
Graham et al. 2013), but must be adopted for the randomly
sampled multiband light curves as present from PS1 and LSST.
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Promising approaches for detecting periodicity in sparsely
sampled multi-bandtime domain data are the multiband
periodogram (VanderPlas & Ivezić 2015) as well as light
curve template fitting (B. Sesar et al. 2015, in preparation).

Looking forward to catalogs of variable stars from Pan-
STARRS, LSST, and other multi-band all-sky time-domain
surveys, our approach meets the constraints of being able to
deal with noisy observational through different bands,
accompanied by data from other surveys, and is fast enough
to provide a sample pure and complete enough for further light
curve analysis.
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