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Abstract

Increasing evidence highlights that senescence plays an important role in idiopathic

pulmonary fibrosis (IPF). This study delineates the specific contribution of mitochon-

dria and the superoxide they form to the senescent phenotype of lung fibroblasts

from IPF patients (IPF‐LFs). Primary cultures of IPF‐LFs exhibited an intensified DNA

damage response (DDR) and were more senescent than age‐matched fibroblasts

from control donors (Ctrl‐LFs). Furthermore, IPF‐LFs exhibited mitochondrial dys-

function, exemplified by increases in mitochondrial superoxide, DNA, stress and acti-

vation of mTORC1. The DNA damaging agent etoposide elicited a DDR and

augmented senescence in Ctrl‐LFs, which were accompanied by disturbances in

mitochondrial homoeostasis including heightened superoxide production. However,

etoposide had no effect on IPF‐LFs. Mitochondrial perturbation by rotenone involv-

ing sharp increases in superoxide production also evoked a DDR and senescence in

Ctrl‐LFs, but not IPF‐LFs. Inhibition of mTORC1, antioxidant treatment and a mito-

chondrial targeting antioxidant decelerated IPF‐LF senescence and/or attenuated

pharmacologically induced Ctrl‐LF senescence. In conclusion, increased superoxide

production by dysfunctional mitochondria reinforces lung fibroblast senescence via

prolongation of the DDR. As part of an auto‐amplifying loop, mTORC1 is activated,
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altering mitochondrial homoeostasis and increasing superoxide production. Deeper

understanding the mechanisms by which mitochondria contribute to fibroblast

senescence in IPF has potentially important therapeutic implications.

K E YWORD S

cyclin-dependent kinase inhibitors, fibroblasts, idiopathic pulmonary fibrosis, mechanistic target

of rapamycin complex 1, mitochondria, peroxisome proliferator-activated receptor gamma

coactivator 1-alpha, rapamycin, reactive oxygen species and mitoTEMPO

1 | INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a lethal disease of unknown

aetiology that largely presents in the elderly. Although the pathogen-

esis of IPF is unclear, it is considered to be a consequence of dysreg-

ulated repair responses emanating from an injured epithelium.1

Epithelial cell hyperplasia and myofibroblast/collagen accumulation in

lung parenchyma lead to tissue structural defects that impair gas

exchange.2 Until recently, effective treatment options for IPF were

limited to lung transplantation. However, both pirfenidone and ninte-

danib have been shown to reduce the rate of decline in lung func-

tion and increase progression free survival in IPF, albeit with

significant side effects.3,4 These positive developments have encour-

aged renewed interest in identification of alternative and comple-

mentary drug targets.

Cellular senescence follows a DNA damage response (DDR) and

subsequent induction of p53‐p21CIPI and/or p16 INK4a‐pRB sig-

nalling,5 both of which lead to cell‐cycle arrest. Senescent cells are

also resistant to apoptosis, evade immune surveillance and acquire a

senescence‐associated secretory phenotype (SASP).6-8 There is

mounting evidence to support an important contribution of senes-

cence in IPF. For example, mutations in genes encoding components

of the telomerase complex that accelerate replicative senescence are

linked to IPF and senescent markers are detected in the lung of IPF

patients.9-12 Furthermore, senescent prone mice are more suscepti-

ble to experimental pulmonary fibrosis, whereas the targeting of

senescent cells is protective.6,13 Recent evidence suggests that the

senescence of type II alveolar epithelial cells (AECIIs) in IPF impairs

re‐epithelialization following injury, triggering a cascade of events

that lead to fibrosis.14,15 Senescent lung fibroblasts (LFs) are also

highly likely have a role in IPF, exhibiting myofibroblast‐like charac-

teristics (ie, increased α‐smooth muscle actin expression) and a highly

activated secretome.6,11,12,16 In IPF, a failure to eliminate senescent

fibroblasts by apoptosis or immune cell clearance is postulated to

impede wound resolution and contribute to disease progression.11,12

Mitochondria are double membrane‐bound organelles responsible

for energy production. Mitochondrial integrity is maintained through

the coordination of several processes such as biogenesis and mito-

phagy, which have been collectively referred to as mitochondrial

quality control (MQC).17 Dysfunctional MQC and inflammation are

key signatures of ageing and several ageing‐related diseases. As part

of the mitochondrial energy generating process involving the elec-

tron transport chain (ETC), high‐energy electrons leak and generate

reactive oxygen species (ROS). Mitochondrial DNA (mtDNA) is highly

sensitive to oxidative damage because of its proximity to the ETC

and ROS production, lack of chromatin structure and a reduced

capacity for repair.18 As such, mtDNA damage and subsequent

mutations can result in mitochondrial dysfunction, including a col-

lapse in the mitochondrial membrane potential,19 which in turn con-

tributes to further ROS production, that ultimately leads to

dysmorphic and impaired mitochondria. Increased mtDNA levels and

mass occur in a number of ageing organs and tissues, including the

lung, possibly as an adaptive mechanism to compensate for dimin-

ished mitochondrial output.20

Sustained increases in ROS as a result of mitochondrial dysfunc-

tion are thought to reinforce the DDR, and senescence as a conse-

quence.21-23 Senescent LFs from IPF patients (IPF‐LFs) have recently

been reported to exhibit features of mitochondrial dysfunction,

including disrupted cristae and a diminished capacity for oxidative

phosphorylation.24 However, the consequences of these mitochon-

drial perturbations on superoxide production have not been evalu-

ated, nor any association between senescence and mitochondrial

dysfunction. In this study, we characterize for the first time the rela-

tionship between the DDR, senescence and mitochondrial dysfunc-

tion in IPF‐ and Ctrl‐LFs involving mitochondrial superoxide. We

provide evidence that in IPF‐LFs, an auto‐amplifying loop exists

involving mitochondrial‐derived ROS which perpetuates senescence,

and that the disruption of this cycle has potential important thera-

peutic implications. Increased activation of the mechanistic target of

rapamycin complex 1 (mTORC1) and subsequent alterations in mito-

chondrial homoeostasis mediate the increased ROS production that

follows a DDR and contributes to senescence persistence in LFs.

2 | METHODS

2.1 | Cell culture

LF cell cultures were established as described previously25 using lung

tissue resections from patients at the John Hunter Hospital (New

Lambton Heights, Australia) under ethical approval from the Hunter

New England Human Research Ethics Committee (16/07/20/5.03)

following guidelines from the National Health and Medical Research

Council (NHMRC, Australia). All patients had provided written,

informed consent. Cell cultures were also obtained from the Alfred

Lung Fibrosis BioBank (Alfred Hospital, Melbourne, Australia) under

ethical approval from the Alfred Health Ethics Committee (#336/13)
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following NHMRC guidelines. Donors were classified as either IPF or

Control (Ctrl). IPF patients were accurately phenotyped by respira-

tory clinicians in regard to underlying diagnosis and disease severity,

with patient characteristics listed in Table S1. Age‐matched controls

were either patients with no evidence of interstitial lung disease

undergoing routine thoracic surgical procedures or lung transplant

donors. LFs in culture, established from separate patients/donors

were used at an early passage (1‐6) to minimize complications with

replicative senescence. For experiments directly comparing Ctrl and

IPF‐LFs, the average age of the donors or patients is shown in

Table S2. Cells were grown in Dulbecco's modified Eagle's medium

(DMEM) containing high glucose (4.5 g/L), L‐glutamine (2 mmol L−1),

sodium pyruvate (1 mmol L−1), non‐essential amino acids (1% v/v,

Sigma) and heat‐inactivated foetal calf serum (FCS) (10% v/v) at

37°C in air containing 5% CO2 for senescence characterization at

baseline. For chemical‐induced senescence experiments, cells were

replenished in serum‐reduced DMEM containing 0.4% v/v FCS for

24 hour before addition of etoposide (10 μmol L−1), rotenone

(100 nmol L−1) or the appropriate volume of DMSO as vehicle con-

trol. Therapeutics, including rapamycin (100 nmol L−1), mitoTEMPO

(1 μmol L−1) or N‐acetyl cysteine (NAC, 2 mmol L−1), were added

30 minute before etoposide.

2.2 | Immunofluorescence

Phosphorylated p53 and histone H2A.X (γH2A.X) in nuclei and

CoxIV in mitochondria were detected by immunofluorescence. Cells

grown in 48‐well plates were fixed with 4% w/v formaldehyde in

PBS for 10 minute before blocking and permeabilization with 0.15%

v/v Triton X‐100, 10% v/v goat serum and 1% w/v BSA in PBS for

10 minute. Cells were then incubated with anti‐phospho‐p53 (Ser15)

(#9284, Cell Signaling Technology) or ‐phospho‐γH2A.X (Ser139)

(#9718, Cell Signaling Technology) rabbit polyclonal IgG and anti‐
CoxIV (#11967 Cell Signaling Technology) mouse monoclonal IgG,

overnight at 4°C. After washing, cells were incubated with Alexa

Fluor 555 anti‐rabbit‐ and 488 anti‐mouse conjugates (#4413 and

#4408, respectively, Cell Signaling Technology) for 1 hour at room

temperature. All antibodies were used at a 1 in 200 dilution. Cells

were counterstained with DAPI (1 μg/mL, Sigma) and mounted in

70% v/v glycerol. Fluorescent images of cells were taken at 100×

magnification using a Nikon Eclipse Ti‐U fluorescence microscope.

2.3 | Senescence‐associated β‐galactosidase
detection

For senescence‐associated β‐galactosidase (SA‐β‐Gal) staining, sub‐
confluent cell cultures in 12‐well plates were fixed and stained using

a commercial kit (Cell Signaling Technology) according to the manu-

facturer's instructions. Cells were imaged using an Olympus IX51

inverted microscope. For quantitation, blue stained cells were visu-

alised by light microscopy, and counted in random fields at 100×

magnification. Positive cells were expressed as a percentage of total

cells, counted in the same fields by phase‐contrast microscopy.

2.4 | ROS and mitochondrial stress measurements

To detect intracellular ROS or mitochondrial superoxide levels, cells

were replenished in phenol‐red free DMEM before staining with

2’,7’‐dichlorodihydrofluorescein diacetate (DCFDA, 5 μmol L−1,

Sigma) or MitoSOX (1 μmol L−1, Molecular Probes), respectively, for

20 minute at 37°C. Mitochondrial stress and mass were evaluated

by staining cells with 10‐n‐Nonyl‐Acridine Orange (NAO, 5 μmol L−1,

Sigma) and MitoTracker Green (0.5 μmol L−1, Molecular Probes),

respectively. Stained cells grown in 96‐well plates were analysed

using a FLUOstar OPTIMA microplate reader (BMG Labtech). The

excitation and emission wavelengths for DCFDA, MitoTracker Green

and NAO were 485 and 520 nm, respectively, whereas for MitoSOX,

they were 485 and 590 nm, respectively. For fluorescence micro-

scopy, stained cells grown in 48‐well plates were counterstained

with DAPI (1 μg/mL) before imaging using a Nikon Eclipse Ti‐U
inverted microscope at 100× magnification.

2.5 | siRNA transfection

Cells grown in 12‐ or 24‐well plates were transfected with 20 nM

RNA short interference (siRNA) duplex oligonucleotides using RNAi-

Max Lipofectamine (Invitrogen, CA, USA). Prior to transfection, cells

were replenished in antibiotic‐free serum containing DMEM, before

incubation with Lipofectamine‐siRNA complex for 6 hour. The media

was then replaced with DMEM containing 10% FCS. PGC‐1α and

control siRNA (Sigma‐Aldrich, MO, USA) were used in the study.

Two sequences of PGC‐1α siRNA were used at a 1:1 ratio: 5’‐
GCUACUAUGAGCACGUGAA [dT] [dT]‐3’; and 5’‐GCUGUAACA-
CUUCUUAUUA [dT] [dT]‐3’.

2.6 | ELISA and protein assays

Levels of interleukin‐6 (IL‐6), IL‐8, monocyte chemoattractant pro-

tein‐1 (MCP‐1 or CCL2), regulated on activation, normal T cell

expressed and secreted protein (RANTES or CCL5) and insulin‐like
growth factor binding protein‐5 (IGFBP5) in LF supernatants were

measured by specific sandwich enzyme‐linked immunosorbent assays

(ELISA) using commercial kits (RnDSystems, MN, USA) as according

to the manufacturer's instructions. Protein concentration in cell

lysates was measured using the BCA assay kit (Thermo Scientific).

2.7 | nCounter multiplex digital mRNA profiling

Fibroblast inflammatory gene expression was profiled using the

nCounter Human Inflammation v2 Panel (NanoString Technolo-

gies, Seattle, WA), comprising 249 human inflammatory genes and

additional housekeeping genes (www.nanostring.com/products/ge

ne-expression-panels/ncounter-inflammation-panels). For each

sample, RNA (100 ng) was hybridised to the inflammatory gene

expression code set before purification and immobilization to

nCounter cartridges using the nCounter Prep Station (NanoString

Technologies). Cartridges were scanned using the nCounter Digital
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Analyzer and subsequent data analysed with nSolver software

(NanoString Technologies). Raw data of each gene (digital counts)

were normalized to housekeeping genes (CLCT1, GUSB, HPRT1

and TUBB) before the ratio of the IPF versus Ctrl samples was

computed. Heat maps of differentially regulated genes were gen-

erated online using Morpheus software (https://software.broadin

stitute.org/morpheus/).

2.8 | PCR analysis

Real time polymerase chain reaction (PCR) was conducted to

quantify mRNA and mitochondrial DNA. RNA and DNA were puri-

fied from cells using RNeasy and QIAamp DNA mini spin columns

(Qiagen), respectively. RNA was reverse transcribed into cDNA

using the iScript Advanced cDNA kit (Bio‐Rad). DNA was amplified

by PCR using the iTaq Universal SYBR Green Supermix (Bio‐Rad)
in an ABI Prism 7500HT sequence detection system (Applied

Biosystems) with the relevant PCR primers (Table S3). For RNA

quantitation, the threshold cycle (CT) value determined for each

gene of each sample was normalized against that obtained for the

internal controls, GAPDH or 18S rRNA. The level of mRNA for a

particular gene is proportional to 2−(ΔCT), where ΔCT is the differ-

ence between the CT values of the target and control. Similarly,

mitochondrial DNA content relative to nuclear DNA was calcu-

lated by subtracting the CT value of the nuclear gene, B2‐micro-

globulin from the CT value of the mitochondrial gene, tRNA‐Leu
(UUR).26

2.9 | Immunoblotting

Cell lysates (4 μg protein) were subjected to SDS polyacrylamide gel

electrophoresis (SDS‐PAGE) using 4%‐15% Mini‐Protean TGX 15

well stain free gels (Bio‐Rad). Fluorescent detection of protein after

electrophoresis was imaged using a Bio‐Rad Gel Doc imaging system.

Gels were then electroblotted as described previously27 before

membranes were blocked with 1.5% v/v BSA and 2.5% skim milk in

TBS‐T (10 mmol L−1 Tris; 75 mmol L−1 NaCl; 0.1% Tween‐20; pH

7.4) for 1 hour. Membranes were incubated overnight at 4°C with

rabbit polyclonal IgGs raised against NF‐κB p65 (1:4000, Abcam) or

phosphorylated‐p70SK (1:1000, Cell Signaling Technology). Blots

were washed with TBS‐T prior to incubation with goat anti‐rabbit
(Chemicon) IgG‐horse raddish peroxidase conjugate (diluted 1:4000)

for 1 hour at room temperature. Antigen was detected by enhanced

chemiluminescence (Amersham Biosciences, UK) using a Bio‐Rad Gel

Doc imaging system.

2.10 | Statistical analysis

Data are presented as box and whiskers plots where n represents

individual experiments conducted using cells from separate donors.

Data were analysed by t‐test, Mann‐Whitney U test or analysis of

variance (ANOVA) (Graphpad Prism 5.0, Graphpad, San Diego, CA),

where appropriate. For nCounter gene analysis, the P values of the

ratio of IPF vs Ctrl samples for each gene were calculated using

nSolver software (NanoString Technologies). A value of P < 0.05

was considered to be statistically significant.

3 | RESULTS

3.1 | IPF‐LFs exhibit senescence‐like characteristics

A composite set of parameters were measured to ascertain the

extent of IPF‐LF senescence. The expression of the cell‐cycle arrest

proteins p16 and p21 and the percentage of cells positive for SA‐β‐
Gal were higher in cultures of IPF‐LFs, compared to the Ctrl‐LFs
(Figure 1A and B). Furthermore, a higher percentage of nuclei in the

IPF‐LFs exhibited foci of phospho‐p53 (pp53), a DDR marker (Fig-

ure 1C). Like p53, phosphorylated histone H2A.X (γH2A.X) rapidly

forms complexes at DNA double‐stranded breaks and is a sensitive

marker of the DDR. The formation of γH2A.X nuclear foci was also

increased in IPF‐LFs, when compared to Ctrl‐LFs (Figure 1D). An

important pathological feature of senescent fibroblasts is the SASP

and while the SASP of IPF‐LFs has previously been described, its

characterization was limited to the gene expression of a few inflam-

matory genes.24 In this study, the levels of IL‐6, CCL2, CCL5 and

IGFBP5 in IPF‐LF conditioned medium were shown to be higher

than Ctrl‐LF conditioned medium (Figure 1E). Using nanostring tech-

nology, 43 inflammatory genes were differentially regulated between

IPF‐ and Ctrl‐LFs (P < 0.05), with 39 increased in IPF (Figure 1F).

This included the expression of CCL5 and CCL20, CCAAT/enhancer‐
binding protein‐β (C/EBPβ), nuclear factor‐kappa‐B p65 (NF‐κB or

RELA), MyD88 and numerous mitogen‐activated protein kinases

(MAPKs) (graphical data of selected genes are presented in Fig-

ure S1A). In addition, the levels of NF‐κB, a pivotal regulator of

SASP cytokine expression, were also higher in IPF‐LFs (Figure S1B).

Collectively, these data confirm that LFs of IPF patients are more

senescent‐like than Ctrl‐LFs, corresponding with an intensified DDR

and SASP.

3.2 | IPF‐LFs display mitochondrial dysfunction

Evidence is accumulating that mitochondrial‐derived superoxide

and its ROS by‐products elicit a DDR to reinforce senescence.22,23

Adding further evidence, the levels of mitochondrial superoxide

and intracellular ROS in this study were significantly higher in IPF‐
LFs than Ctrl‐LFs (Figure 2A and B). IPF‐LFs exhibited other fea-

tures of mitochondrial dysfunction including higher levels of mito-

chondrial DNA (mtDNA) and stress (Figure 2B). Fluorescence

images of three separate cultures of IPF‐ and Ctrl‐LFs stained with

MitoTracker Green suggest that mitochondrial mass is also

increased in IPF‐LFs (Figure 2C). In addition, genes involved in reg-

ulating mitochondrial synthesis (PGC‐1α) or components of the

mitochondrial electron transport chain (UQCRC2 and NDUFB8)

were up‐regulated in IPF‐LFs (Figure 2D), concomitantly with an

increase in the activity of mTORC1, a pivotal mediator of mito-

chondrial homoeostasis (Figure 2E).
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3.3 | Etoposide and rotenone induce Ctrl‐LF
senescence

We next investigated the effects of etoposide on the senescent phe-

notype and mitochondrial function of human LFs. This DNA topoiso-

merase II inhibitor triggers senescence by causing DNA breaks by

interfering with DNA unwinding and subsequent re‐ligation. After a

72‐hour incubation with etoposide (10 μmol L−1) in serum‐reduced
medium (0.4% v/v FCS), Ctrl‐LFs developed characteristics of

senescence including increased formation of p53 nuclear foci, SA‐β‐
Gal activity and SASP cytokine production (Figure 3A‐C). Senescence
induction was accompanied by increases in mitochondrial superoxide

production and stress (Figure 3D‐E). In contrast, etoposide had little

effect on the senescent phenotype of IPF‐LFs (see also Figure S2).

To investigate whether mitochondrial‐derived ROS contributes to

senescence, LF s under similar conditions were also incubated with

rotenone (100 nmol L−1), which binds the mitochondrial ETC to

induce superoxide production. Ctrl‐LFs exhibited a sharp increase in

F IGURE 1 Lung fibroblasts of IPF patients exhibit senescence‐like characteristics. IPF‐ and Ctrl‐LFs were examined for senescence
phenotype markers. (A) Baseline levels of CDK inhibitor (p16 and p21) mRNA (n = 5‐6). Gene (mRNA) data were normalized to GAPDH with
levels of Ctrl‐LFs (2−ΔCT x 103) for p21 and p16 being 167 ± 30 and 0.031 ± 0.015, respectively. (B) Left SA‐β‐Gal activity in LFs as detected
by cytochemical staining (blue). Right Quantitative data (n = 7) (C) Immunofluorescence detection of activated p53 (pp53) Left Images showing
accumulation of pp53 (red) in the nuclei (blue) of IPF‐LFs. Right Quantitative data (n = 8‐10). *P < 0.05, compared to Ctrl‐LFs. (D) Detection of
phosphorylated γH2A.X. Left Immunofluorescence images. Right Quantitative data (n = 5‐6). *P < 0.05, compared to Ctrl‐LFs. (E) Levels of
SASP cytokine protein in the condition medium of LF cultures. Cytokine data were normalized to total protein with Ctrl‐LF levels for CCL2,
CCL5, IGFBP5, IL‐6 and IL‐8 being 87 ± 16, 0.23 ± 0.03, 248 ± 56, 175 ± 36 and 327 ± 35 ng/mg protein, respectively. *P < 0.05, compared
to Ctrl‐LFs (n = 5‐9). (F) Heat map showing the up‐regulated genes of the nCounter human inflammatory gene panel; IPF‐ vs Ctrl‐LFs
(P < 0.05, n = 5‐6). The rows and columns represent samples and inflammatory genes, respectively, whereas colours depict relative gene
expression, with blue and red being lower and higher expression, respectively
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superoxide levels within 60 minute of rotenone treatment, although

there was no evidence of an increase in the DDR (i.e, increased

nuclear pp53) within the first 6 hour of treatment (Figure S3). How-

ever, Ctrl‐LFs showed characteristics of senescence and an increase

in the DDR after 72‐hour rotenone incubation (Figure 3F‐H).

Concomitantly, rotenone induced long‐term increases in mitochon-

drial superoxide production and stress (Figure 3I and J). Like etopo-

side, rotenone had little effect on senescence markers in IPF‐LFs
(Figure 3).

3.4 | NAC suppresses etoposide‐induced
senescence

The role of ROS in LF senescence was investigated using N‐acetyl
cysteine (NAC). This antioxidant replenishes intracellular stores of

glutathione, the primary endogenous antioxidant of cells that neu-

tralize excess ROS. NAC (2 mmol L−1) attenuated the stimulatory

effects of etoposide on senescent markers in Ctrl‐LFs and formation

of phosphorylated‐p53 (Figure 4A‐C). Etoposide also increased the

number of phosphorylated‐γH2A.X nuclear foci in a NAC‐sensitive
manner (Figure 4A). NAC antioxidant activity was shown by its

attenuation of etoposide‐induced increases in intracellular ROS pro-

duction (Figure 4D). NAC also suppressed etoposide‐induced
increases in mitochondrial stress and mass as shown by

mitochondrial staining with NAO (Figure 4E) and Cox IV antibody

(Figure 4A), respectively.

3.5 | Rapamycin attenuates etoposide‐induced Ctrl‐
LF senescence

Our data suggest that alterations in mitochondrial homoeostasis

involving increased superoxide production have a causative role in

LF senescence. To investigate further this possibility, we used rapa-

mycin, the pharmacological inhibitor of mTORC1, which has a pivotal

role in regulating mitochondrial biogenesis and activity, including

PGC‐1α expression. Pre‐treatment of Ctrl‐LFs with rapamycin

(100 nM) attenuated the effects of etoposide on senescent markers,

PGC‐1α gene expression and mitochondrial stress, mass and DNA

levels (Figure 5).

3.6 | Rapamycin and mitoTEMPO decelerate IPF‐LF
senescence

We next investigated the effects of long‐term treatment with rapa-

mycin and mitoTEMPO, a mitochondrial‐selective antioxidant, on

IPF‐LF senescence. IPF‐LFs maintained in 10% serum containing

medium, initially at lower densities to allow for proliferation over an

extended period, were incubated with rapamycin (100 nmol L−1) or

F IGURE 2 Lung fibroblasts of IPF patients exhibit mitochondrial dysfunction. (A) Superoxide production as detected using the MitoSOX
fluorophore (Red) in IPF and Ctrl‐LFs. Nuclei are counter‐stained using DAPI (blue). (B) Levels of mitochondrial superoxide, cellular ROS,
mitochondrial DNA and stress (n = 4‐7). Mitochondrial stress was evaluated using the NAO fluorophore and microplate fluorometry. (C)
Mitochondrial staining using MitoTracker Green in three separate cultures of IPF‐ and Ctrl‐LFs. (D) Expression of mitochondrial‐associated
genes (n = 4‐7). mRNA data was normalized to GAPDH mRNA with Ctrl‐LF levels (2−ΔCT x 103) for PGC‐1α, PGC‐1β, UQCRC2 and NDUFB8
being 12 ± 7, 368 ± 40, 24 ± 2 and 40 ± 4, respectively. (E) mTORC1 activity was measured by increases in the phosphorylation of the
mTORC1 substrate, p70S6k. Left top Immunoblot detection of pp70S6K in cell lysates obtained from LFs of separate IPF and Ctrl donors. Left
bottom Fluorescent detection of total protein in gels before immunoblotting to verify protein loading. Right Quantitative data. *P < 0.05,
**P < 0.01 compared to Ctrl‐LFs
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mitoTEMPO (MiT, 1 μmol L−1). The media and pharmacological

agents were replenished every 2‐3 days for 8 days. Rapamycin or

mitoTEMPO treatment reduced markers of senescence, the DDR

and SASP cytokines (Figure 6A‐D), accompanied by reductions in

mitochondrial superoxide production and DNA content (Figure 6E‐
G). MitoTEMPO also attenuated etoposide‐induced increases in

senescence marker expression and levels in cultures of Ctrl‐LFs (Fig-

ure S4).

F IGURE 3 Etoposide and rotenone induce senescence of control lung fibroblasts. IPF‐ and Ctrl‐LFs treated with etoposide (Etop, 10 μmol
L−1, top panel) or rotenone (Rot, 100 nmol L−1, bottom panel) for 72 hour were evaluated for markers of senescence and mitochondrial
superoxide production. (A) Top Fluorescence analysis of phosphorylated p53 (pp53, red) and nuclei (blue) in etoposide‐treated cells. Bottom
Cytochemical staining of SA‐β‐Gal (blue). (B‐E) Levels of IL‐6 and CCL2 protein, mitochondrial superoxide and stress of etoposide‐treated cells.
*P < 0.05 (n = 4‐7). (F) Top Fluorescence images of phosphorylated‐p53 (red) in nuclei (blue) of LFs of rotenone‐treated cells. Bottom SA‐β‐Gal
cytochemical staining. (G‐J) Levels of IL‐6 and CCL2 protein, mitochondrial superoxide and stress of rotenone‐treated cells. *P < 0.05 (n = 5‐8)
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3.7 | Rapamycin and mitoTEMPO down‐regulate
myofibroblast marker expression

Senescent LFs exhibit myofibroblast‐like characteristics, including

increased levels of α‐smooth muscle actin (α‐SMA).12,24 In this study,

etoposide stimulated increases in the levels of mRNA encoding the

myofibroblast markers, α‐SMA and collagen type I α1 in Ctrl‐LFs (Fig-
ure S5). Furthermore, rapamycin and mitoTEMPO attenuated the

effects of etoposide (Figure S5), and reduced the expression of

myofibroblast markers in IPF‐LFs (Figure 6H‐I).

3.8 | PGC‐1α knockdown decelerates IPF‐LF
senescence

As PGC‐1α is a primary regulator of mitochondrial biogenesis and

activity downstream of mTORC1, we also explored the impact of

PGC‐1α knockdown on IPF‐LF senescence. Transfection of IPF‐LFs
maintained in 10% serum containing medium with PGC‐1α‐targeting
siRNA 3 times over an 8‐d period reduced markers of senescence,

accompanied by decreases in the levels of mitochondrial superoxide

and DNA (Figure 7). Immunoblotting showed PGC‐1α siRNA

transfection reduced the levels of a low molecular weight (MW) form

of PGC‐1α (~50 kDa), which was the most abundant of the PGC‐1α
subtypes detected in LFs (Figure S6). In the absence of transfection,

baseline levels of this PGC‐1α variant were higher in cultures of IPF‐
LFs than Ctrl‐LFs (Figure S7).

4 | DISCUSSION

The mechanisms that underlay senescence in lung fibroblasts, includ-

ing the specific contribution of mitochondria, remain unclear. In this

study, IPF‐LFs exhibited an array of senescence‐like characteristics

in vitro, including an increased DDR and SASP. These were accom-

panied by alterations in mitochondrial homoeostasis, as evidenced by

enhanced superoxide production, increased levels of mtDNA and

activation of mTORC1. The DNA damaging agent, etoposide induced

senescence in Ctrl‐LFs that was associated with mitochondrial per-

turbation. However, etoposide had insignificant effect on IPF‐LF
phenotype, possibly because a high proportion of these cells were

already senescent. Pharmacological‐induced senescence was sensi-

tive to antioxidant treatment, suggesting a role of ROS in the

F IGURE 4 NAC attenuates etoposide‐induced senescence of control lung fibroblasts. The effect of the antioxidant NAC (2 mmol L−1) on
senescence and mitochondrial homoeostasis in Ctrl‐LFs following incubation with etoposide (Etop, 10 μmol L−1) for 72 hour. (A) Fluorescence
images Top Phosphorylated‐p53 (red) in nuclei (blue) of LFs. Middle Phosphorylated‐γH2A.X (red), CoxIV (green) and nuclei (blue). Bottom
Cytochemical staining of SA‐β‐Gal (blue). (B) Levels of p21 mRNA. (C) Levels of IL‐6 in conditioned media. (D, E) Cytosolic ROS (DCF
fluorescence) and mitochondrial stress as measured by fluorometry. *P < 0.05 (n = 4‐6)
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development of LF senescence. Supporting this finding, mitochon-

drial perturbation and increased superoxide production induced by

rotenone mimicked the senescence‐inducing effects of etoposide in

Ctrl‐LFs. Furthermore, pharmacological inhibition of the mitochon-

drial regulator, mTORC1 attenuated chemical‐induced senescence in

Ctrl‐LFs, and decelerated IPF‐LF senescence in long‐term culture.

F IGURE 5 Rapamycin attenuates etoposide‐induced senescence of control lung fibroblasts. The effect of rapamycin (Rap, 0.1 mol L−1) on
senescence and mitochondrial homoeostasis of Ctrl‐LFs following incubation with etoposide (Etop, 10 μmol L−1) for 72 hour. (A)
Immunofluorescence. Top Phosphorylated‐p53 (red) in nuclei (blue). Middle Phosphorylated‐γH2A.X (red), CoxIV (green) and nuclei (blue).
Bottom Cytochemical staining of SA‐β‐Gal (blue). (B) Quantitation of phosphorylated p53 in nuclei. (C, D) Levels of p21 and PGC‐1α mRNA.
(E) Levels of IL‐6. (F, G) Levels of mitochondrial DNA and stress as measured by PCR and fluorometry, respectively. *P < 0.05 (n = 4‐5)
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Promisingly, the mitochondrial‐selective antioxidant, mitoTEMPO,

had a comparable effect on IPF‐LF senescence. Overall, this study

provides substantial evidence that senescence and mitochondrial

dysfunction are highly interrelated processes in IPF‐LFs and that tar-

geting either mitochondrial‐derived superoxide or the DDR‐driven
processes that contribute to its increased production may limit the

damaging impact of senescence in IPF.

The IPF‐LFs in this study displayed many of the senescence char-

acteristics reported previously, including increased p16 and p21

expression and SA‐β‐Gal activity.12,24 In addition, for the first time to

our knowledge, IPF‐LFs were associated with increased nuclear acti-

vation of p53. As part of the DDR, ataxia‐telangiectasia mutated

kinase (ATM) phosphorylates p53 at sites of DNA double‐stranded
breaks (DSBs).5 Nuclear activation of p53 correlates with DSB

formation and the subsequent DDR. In this study, IPF‐LFs exhibited

a higher proportion of nuclei containing foci of phosphorylated p53.

In DDR signalling, activated p53 up‐regulates p21 gene expression

and levels, which in turn mediates cell‐cycle arrest through cyclin‐
dependent kinase (CDK) inhibition. While speculative and difficult to

show, increased numbers of senescent LFs may exist in IPF patients

before the onset of disease, with a primary role in IPF pathogenesis.

These senescent LFs would amplify aberrant wound repair processes

that follow epithelial injury, exacerbating the fibrotic response. Fac-

tors contributing to the heightened LF senescence that precedes IPF

development include age, genetics, oxidative stress (involving mito-

chondrial dysfunction) and lung injuries. Higher levels of LF senes-

cence may also be a consequence of secondary events in IPF

pathology, such as the replicative senescence that occurs during the

F IGURE 7 PGC‐1α knockdown decelerates IPF lung fibroblast senescence. The effect of PGC‐1α siRNA (siR) transfection on senescence
and mitochondrial homoeostasis of IPF‐LFs for 8 days. (A) Levels of PGC‐1α mRNA in transfected cells (B) Left Immunofluorescence images
showing phosphorylated‐p53 (red) in nuclei (blue). Right Quantitation of phosphorylated‐p53 in nuclei. (C) Levels of p21 mRNA. (D) Levels of
IL‐6. (E, F) Levels of mitochondrial superoxide and DNA, as measured by fluorometry and PCR, respectively. *P < 0.05 (n = 6)

F IGURE 6 Rapamycin and mitoTEMPO decelerate IPF lung fibroblast senescence. The effect of rapamycin (Rap, 0.1 mol L−1) and
mitoTEMPO (MiT, 1 mol L−1) on senescence and mitochondrial homoeostasis of IPF‐LFs for 8 days. (A) Immunofluorescence. Top
Phosphorylated‐p53 (red) in nuclei (blue). Bottom Cytochemical staining of SA‐β‐Gal (blue). (B) Quantitation of phosphorylated p53 in nuclei. (C,
D) Levels of p21 and PGC‐1α mRNA. (E) Levels of IL‐6. (F, G) Levels of mitochondrial superoxide and DNA, as measured by fluorometry and
PCR, respectively. (H, I) Levels of α-SMA (ACTA2) and collagen type I α1 (COL1A1) mRNA. *P < 0.05, **P < 0.01 (n = 5‐7)
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fibroproliferative phase of the disease. Senescence can also spread

from senescent to naïve fibroblasts in the ageing fibrotic lung as a

consequence of the “bystander effect”.28 Regardless of the reason(s)

for increased IPF‐LF senescence, these cells are likely to have impor-

tant roles in IPF because of their resistance to apoptosis, myofibrob-

last‐like features and development of a SASP.

The SASP is an important pathological feature of senescence.6,29

In this study, IPF‐LFs exhibited increased production of cytokines

typically associated with the SASP, as well as a markedly pro‐inflam-

matory gene expression profile. Profiling revealed the expression of

several transcription factors was higher in IPF, including NF‐κB and

C/EBPβ, important mediators of the secretory component of senes-

cent cells.30 In senescence, NF‐κB signalling follows the DDR via

activation of p38 MAPK and its downstream mediator, MAPKAPK2,

both of which were up‐regulated in IPF‐LFs.30 Furthermore, the

expression of two key modulators of the innate immune system that

regulate NF‐κB activation, MyD88 and toll‐interacting protein (Tol-

lip), was also higher in IPF‐LFs. Evidence is accumulating that chronic

low‐level activation of the innate immune system has an important

role in IPF, with several Tollip gene polymorphisms linked with the

disease.31 A negative regulator of acute inflammation, Tollip also

augments chronic low‐grade inflammation in a process that involves

its translocation to mitochondria.32 Many of the inflammatory gene

changes reported in this study align with our current understanding

of IPF pathology and/or processes of cellular senescence.

Mitochondrial dysfunction is a feature of both senescence and

ageing.19 Mitochondrial DNA, membranous lipids and proteins are

highly susceptible to oxidative damage, causing respiratory uncou-

pling and increased formation of superoxide.33 The latter in turn con-

tributes to further mitochondrial damage, as part of a cycle that

ultimately leads to dysmorphic and impaired mitochondria. In this

study, IPF‐LF mitochondrial dysfunction was shown by increases in

MitoSOX and NAO fluorescence, which were not evident in Ctrl‐LFs.
The MitoSOX probe accumulates in mitochondria where it selectively

binds superoxide, whereas NAO binds to the depolarized mitochon-

drial inner membrane, serving as an indicator of mitochondrial stress.

Levels of the Nox4 enzyme, which also forms superoxide, are

increased in IPF‐LFs, and Nox4 is implicated in fibroblast senescence

in pulmonary fibrosis.11 Dysregulated Nox4 may contribute to IPF‐LF
mitochondrial dysfunction, particularly as Nox4 can localize in mito-

chondria, and its expression is stimulated by mitochondrial‐derived
ROS.31 Another important pathological feature of mitochondrial dys-

function is the cellular release of fragmented, oxidised mtDNA, which

acts as danger associated molecular pattern (DAMP).33 IPF‐LFs in

culture, when compared to Ctrl‐LF, release increased amounts of

mtDNA.34 Furthermore, BALF and serum levels of mtDNA are higher

in patients with IPF, as compared to control donors, with serum

levels being predictive of all‐cause mortality.34

In addition to respiratory decoupling, elevated levels of mito-

chondrial superoxide in IPF‐LFs could also be a consequence of

increases in mitochondrial mass. The dysregulation of mitochondrial

biogenesis, fusion, fission and mitophagy all contribute to changes in

the mitochondrial pool in ageing and disease.19,23,34,35 Increased

mitochondrial mass is reported in AECII and lung fibroblasts in IPF

and airway smooth muscle (ASM) cells in severe asthma.23,36,37 In

this study, increased levels of mtDNA and MitoTracker Green stain-

ing suggest IPF‐LFs also exhibit a net increase in mitochondrial mass

as compared to Ctrl‐LFs, possibly a consequence of increased bio-

genesis. In support of this hypothesis, the IPF‐LFs showed an

increase in mTORC1 activity and PGC‐1α expression. PGC‐1α is a

key regulator of mitochondrial biogenesis and is directly up‐regulated
by mTORC1 at a transcriptional level. Impaired recycling of mito-

chondria (mitophagy) may also explain our findings of increased

mitochondrial mass in IPF‐LF cultures. While not investigated in this

study, mitophagy has been reported to be suppressed in IPF‐LFs.38

Contrary to our observations, Rojas and colleagues reported a

decrease in the mitochondrial mass of fibroblasts isolated from IPF

lung.24 Variations in fibroblasts isolation and culture conditions

between these two studies may contribute to these divergent find-

ings. In particular, our fibroblast culture protocol used a high glucose

containing medium favouring increased mitochondrial biogenesis. 5′
AMP‐activated protein kinase (AMPK) is activated when energy

stores are low to regulate mitochondrial biogenesis by inhibiting

mTORC1,39 which may have been relevant in the Rojas study.

In this study, we provide evidence of a causal link between LF

senescence and mitochondrial dysfunction. mTORC1 is a key media-

tor of cellular senescence, which links the DDR with alterations in

mitochondrial homoeostasis in an auto‐amplifying loop that perpetu-

ates senescence.40 As part of this loop, ATM via AKT activates

mTORC1, which regulates mitochondrial biogenesis through PGC‐1α/
β expression and by inhibiting eukaryotic translation initiation factor

4E (eIF4E)‐binding proteins (4E‐BPs).41 Furthermore, mTORC1 sup-

presses mitophagy and the expression of the antioxidant enzyme,

mitochondrial superoxide dismutase (MnSOD).38 Inhibition of the

mTORC1 pathway is reported to attenuate γ‐irradiation‐induced
senescence in fibroblasts by suppressing mitochondrial biogenesis

and subsequent superoxide production.23 In this study, rapamycin

attenuated etoposide‐induced Ctrl‐LF senescence and decelerated

IPF‐LF senescence in long‐term culture. Furthermore, the knockdown

of PGC‐1α in IPF‐LFs resulted in a marked reduction in expression

of senescence markers. Overall, these observations provide addi-

tional evidence of the importance of mitochondria and mTORC1 sig-

nalling in the maintenance of LF senescence. Increased mTORC1

activation within the fibrotic foci of IPF patients suggests this path-

way has a role in pulmonary fibrosis.42 Recently the anti‐fibrotic
potential of the pan‐PI3 kinase/mTOR inhibitor, GSK2126458 was

evaluated in ex vivo models of IPF with promising results.43 How-

ever, rapamycin has also been associated with a more rapid disease

progression in a cohort of IPF patients.44 As mTORC1 regulates a

range of processes outside of mitochondrial homoeostasis, with

many potential biological effects, alternative targets may be required

to limit the deleterious effects of dysfunctional mitochondria on

senescence in the treatment for IPF. In this regard, mitoTEMPO and

other mitochondrial‐selective antioxidants such as MitoQ show

potential as therapies for lung fibrosis. Here we observed that mito-

TEMPO decelerates IPF‐LF senescence in vitro, and in pre‐clinical
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studies for asthma and kidney disease, mitoTEMPO exhibits anti‐
fibrotic activity.1,45,46

In this study, the expression of PGC‐1α was increased in IPF‐LFs
and senescence‐induced Ctrl‐LFs. However, Yu et al47 recently

reported that levels of PGC‐1α protein were decreased in lung

homogenates of IPF patients (even though levels of its mRNA were

increased). The PGC‐1α detected in lung lysates by immunoblotting

was comparable in size to the PGC‐1α1 isoform, which has a pre-

dicted MW of 92 kDa, with lower MW forms not described or

shown. Here, the predominant form of PGC‐1α detected in LFs had

a lower apparent MW, between 50 and 75 kDa. While PGC‐1α1 is

the most widely characterised PGC‐1α isoform, there are numerous

lower MW versions, including PGC‐1α2 and PGC‐1α3, both of which

are closer to 50 kDa in size.48 These splice variants are regulated

differently to PGC‐1α1 and evoke distinct biological programs.49 An

important function ascribed to PGC‐1α, asides from its role in mito-

chondrial biogenesis, is the induction of antioxidant expression.50

The antioxidant role of PGC‐1α is dependent on the energy status

of the cell and involves activation of its upstream regulator AMPK

under conditions of energetic stress.50 However, the knockdown of

PGC‐1α in IPF‐LFs under the conditions used in this study was not

only associated with reduced levels of mitochondrial DNA, but also

superoxide generation. These data suggest that PGC‐1α‐dependent
antioxidant responses in IPF‐LFs are not sufficient to overcome

increased ROS production as a consequence of PGC‐1α‐dependent
mitochondrial biogenesis. These observations may in part be a result

of alternative splicing patterns and/or post‐translational modifica-

tions of PGC‐1α in IPF‐LFs. While the PGC‐1α knockdown data of

this study supports a role of mitochondrial biogenesis in the rein-

forcement of LF senescence, further investigation is required to

ascertain the specific contribution of PGC‐1α and its various iso-

forms in lung fibrosis.

In this study, we provide evidence that an auto‐feedback loop

exists between dysfunctional mitochondrial and senescence in LFs,

involving increases in mitochondrial superoxide and mTORC1 activa-

tion. However, there are inherent difficulties in confirming the exis-

tence of such a loop, particularly as senescence and mitochondrial

dysfunction have a range of overlapping pathological features and

effects. Another contributing factor is the non‐selectivity of the tools

that can be utilized with primary cultures of LFs to delineate the role

of mitochondria in the acquisition and reinforcement of senescence.

We have made mention of the limitations of the approaches employed

to target mitochondrial function and biogenesis, including the blunt

effects of rapamycin and PGC‐1α knockdown. To date, one of the

more convincing studies to show the important contribution of mito-

chondria to senescence was by Passos and colleagues, who used

recombinant genetics to remove mitochondria from embryonic fibrob-

lasts (ie, MRC‐5s).23 However, to conduct such mechanistic studies is

less feasible with primary cultures of LFs from aged donors/patients.

What our studies do confirm is that mitochondrial dysfunction involv-

ing increased superoxide occurs in parallel with senescence in IPF‐LFs.
These processes are highly intertwined and that a range of mitochon-

drial targeting approaches attenuates/decelerates senescence.

In summary, LFs isolated from IPF patients exhibit senescence‐
like characteristics in association with an increased DDR, SASP

and changes in mitochondrial homoeostasis. Our data also support

roles of increased mitochondrial stress and superoxide production

in the induction and maintenance of the senescent phenotype in

LFs. The involvement of dysfunctional mitochondria in LF senes-

cence may provide alternate targeting opportunities in the treat-

ment of IPF.
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