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Abstract Simulations of polar ozone losses were performed using the three-dimensional

high-resolution (1◦ × 1◦) chemical transport model MIMOSA-CHIM. Three Arctic winters

1999–2000, 2001–2002, 2002–2003 and three Antarctic winters 2001, 2002, and 2003 were

considered for the study. The cumulative ozone loss in the Arctic winter 2002–2003 reached

around 35% at 475 K inside the vortex, as compared to more than 60% in 1999–2000. During

1999–2000, denitrification induces a maximum of about 23% extra ozone loss at 475 K as

compared to 17% in 2002–2003. Unlike these two colder Arctic winters, the 2001–2002

Arctic was warmer and did not experience much ozone loss. Sensitivity tests showed that the

chosen resolution of 1◦ × 1◦ provides a better evaluation of ozone loss at the edge of the polar

vortex in high solar zenith angle conditions. The simulation results for ozone, ClO, HNO3,

N2O, and NOy for winters 1999–2000 and 2002–2003 were compared with measurements

on board ER-2 and Geophysica aircraft respectively. Sensitivity tests showed that increasing

heating rates calculated by the model by 50% and doubling the PSC (Polar Stratospheric

Clouds) particle density (from 5 × 10−3 to 10−2 cm−3) refines the agreement with in situ

ozone, N2O and NOy levels. In this configuration, simulated ClO levels are increased and

are in better agreement with observations in January but are overestimated by about 20%

in March. The use of the Burkholder et al. (1990) Cl2O2 absorption cross-sections slightly

increases further ClO levels especially in high solar zenith angle conditions. Comparisons of

the modelled ozone values with ozonesonde measurement in the Antarctic winter 2003 and

with Polar Ozone and Aerosol Measurement III (POAM III) measurements in the Antarctic

winters 2001 and 2002, shows that the simulations underestimate the ozone loss rate at the

end of the ozone destruction period. A slightly better agreement is obtained with the use of

Burkholder et al. (1990) Cl2O2 absorption cross-sections.

Keywords Comparison with observations . High-resolution 3-D chemical transport

model . Ozone loss . Stratospheric chemistry . Polar ozone . Sensitivity tests

1. Introduction

During the last decade, many experimental evidences have confirmed substantial win-

ter/spring Arctic lower stratospheric ozone depletion (Schoeberl et al., 1990; Kyro et al.,
1992; Waters et al., 1993; Salawitch et al., 1993; Braathen et al., 1994; Rex et al., 1995;

Bojkov et al., 1995; Manney et al., 1996; Hansen et al., 1997). Unlike in Antarctica where the

ozone depletion in winter/spring is a regular feature, the inter-annual variability of tempera-

ture and consequently the ozone depletion in the Arctic stratosphere is very large. In recent

Arctic winters e.g. 1999–2000 and 2002–2003, a sufficiently low temperature and conse-

quently extensive formation of polar stratospheric clouds led to the long persistence of active

chlorine species. Added to this was extensive de-nitrification (Fahey et al., 2001; Schiller

et al., 2002) by the sedimentation of large PSC particles resulting in substantial winter/spring

ozone depletion in the Arctic lower stratosphere. The 1999–2000 Arctic stratosphere was
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considered amongst the coldest one when the lower stratospheric temperature was below

195 K (required for PSC formation) for a large number of days (Manney and Sabutis, 2000).

A coordinated campaign THESEO/SOLVE 2000 was carried out for the measurements of

ozone and other species (Newmann et al., 2002). These observations were used to calcu-

late chemical ozone depletion and provided an excellent platform to understand the ozone

loss phenomenon. Extensive modeling studies including 3-D CTM and photochemical box

models have been performed to observe chemical ozone loss particularly during 1999–2000

Arctic winter. Sinnhuber et al. (2002) found more than 2.5 ppmv (70%) of chemical ozone

loss from SLIMCAT at the end of March 2000, which was in good agreement with the

ozonesonde observation at Ny-Ålesund. This much of ozone loss was however found to be

due to cold bias in UKMO temperature. When the model was run with ECMWF temper-

ature field, which were closer to the observations, chemical ozone loss was less than that

calculated by Sinnhuber et al. (2002), despite a better agreement between modelled active

chlorine and ER-2 observations. Kopp et al. (2002) compared KASIMA chemical transport

model simulations using ECMWF analysis with the ozone observations by a Fourier trans-

form infrared (FTIR) spectrometer and millimeter wave radiometer for 1999–2000 Arctic

winter and found that the model underestimated these observations by 30% and 20% re-

spectively. The modeling study of Pierce et al. (2002) shows a good agreement with ozone

loss rates calculated from the Match analysis but at the cost of over prediction of chlorine

activation. Using Chemical Lagrangian model of the Stratosphere (CLaMS) Grooβ et al.
(2002) showed up to 60% of ozone loss between 425 and 450 K during mid-March, a good

agreement with observation, but they define their denitrification on the basis of observed

NOy-N2O relation and ER-2 temperature measurement. From these studies, it is clear that

depending upon the model, adopted chemical and micro-physical scheme of PSC formation,

growth and sedimentation, models have some deficiency to reproduce correct ozone loss. If

they could, however, reproduce ozone loss correctly, it is due either to bias in temperature

or over prediction of chlorine or using observed denitrification. One of the major issues in

the current Arctic ozone loss modeling is to reproduce January ozone loss correctly (Rex

et al., 2003), which can affect the overall ozone loss at the end of March. Due to unexplained

ozone loss at high solar zenith angle (during January) a large uncertainty in overall modelled

ozone loss was found for the winters like 1994–1995 and 1999–2000 when January ozone

loss was larger in comparison to other winters (WMO, 2002). Another important issue is

the implementation of the micro-physical scheme of the sedimentation of PSC particles to

reproduce observed levels of de-nitrification. Various modeling studies (Drdla et al., 2002;

Davies et al., 2002) have shown that the observed level of denitrification in the Arctic winters

is not due to the sedimentation of synoptic scale ice clouds carrying nitric acid. It has now

been accepted that the Arctic winter denitrification is most likely caused by the sedimentation

of large nitric acid particles (Carslaw et al., 2002; Drdla et al., 2002; Davies et al., 2002).

Current models generally use equilibrium scheme with either a fixed number density or size

and number concentration from the observations. Davies et al. (2002) used sizes and number

density of the observation by Fahey et al. (2001) and found the denitrification similar to that

observed in the Arctic winter 1999–2000. But for better representation of denitrification in

the model, the understanding of NAT particle formation mechanism, growth process, size,

and number density are essential.

In Antarctica, a large wave activity followed by the splitting of Antarctic vortex has been

observed in September 2002. A major stratospheric warming occurred due to extremely large

heat flux at 100 hPa. The transport process during this major warming event caused a large

column ozone anomaly and resulted in less mean vortex ozone loss in comparison to other

Antarctic winters. Extensive observational and modeling studies performed for this winter
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showed the exceptional phenomenon and raised the speculation of its future likelihood in

southern hemisphere (Allen et al., 2003; Hoppel et al., 2003).

In this paper we give an overview of the performance of the 3-D chemical transport

model MIMOSA-CHIM against observations and other contemporary modeling studies for

Arctic winters 1999–2000, 2001–2002, and 2002–2003 and the Antarctic winters 2001,

2002, and 2003. This model was used within the framework of the European project QUOBI

(Quantitative Understanding of Ozone loss by Bipolar Investigation). The purpose of this

project is to assess our understanding of the polar ozone loss mechanism and how correctly

they are represented in current models. To that objective, the project is based on the use of

various observational approaches including Match and several chemical transport models

(CTM) and box models. Within QUOBI, we have tested the ability of MIMOSA-CHIM

to reproduce polar ozone loss in both hemispheres. The model has been used in the past

to evaluate the impact of polar ozone loss on mid-latitudes (Marchand et al., 2003) and

comparisons have been made with ozonesonde observations at various stations. Here, we

present extensive comparison with other minor species observed within the polar vortex.

First we present a short introduction of the model and description of methods used in various

calculations. Then the significance of the high horizontal resolution in the calculation of ozone

loss, considering the Arctic winter 1999–2000 as a particular case, is discussed. We then

compare model results for Arctic winter/spring 1999–2000 with the observations performed

on the ER-2 aircraft during THESEO/SOLVE 2000 mission, EUPLEX (European Polar

Stratospheric Cloud and Lee Wave Experiment) dataset and ozonesonde observations for the

Arctic 2002–2003. In the last section we compare the ozonesonde and POAM III observations

in the Antarctic winters 2001, 2002 and 2003. To compare our results with observations,

several sensitivity tests were performed which are described in the following sections.

2. Model description

MIMOSA-CHIM, a chemical transport model, includes the PV advection model MIMOSA

(Hauchecorne et al., 2002) and the chemistry scheme of the REPROBUS (Reactive Pro-

cesses Ruling the Ozone Budget in the Stratosphere) (Lefèvre et al., 1994; Marchand et al.,
2003). The model runs on an isentropic surface, starting on an orthogonal grid in an az-

imuthal equidistant projection centered at pole. The PV advection model starts from the

meteorological PV field interpolated on the MIMOSA grid. The PV field is calculated from

the meteorological pressure and temperature fields from ECMWF analyses and then inter-

polated to the MIMOSA grid. The PV of each grid point is advected using meteorological

winds interpolated on the MIMOSA grid at the specified isentropic level. As the time passes

the orthogonal MIMOSA grid is stretched and deformed by horizontal gradients in the wind

field. After a given time (6 h) the PV field is re-interpolated to the original grid in order to

keep the distance between two adjacent points approximately constant. For the time interval

of six hours the average change in distance ranges from 10% to 15% in the region between

400 and 675 K potential temperature. The regridding process produces numerical diffusion

and to minimize this diffusion, an interpolation scheme, based on the preservation of second

order momentum of PV perturbation, has been implemented (Hauchecorne et al., 2002).

The model was used to interpret observed ozone laminae in lidar profiles at Observatoire de

Haute-Provence (OHP, 44 N, 5.7 E) and to support the planning of an air-borne ozone lidar

on board of French Falcon (Mystere 20) (Hauchecorne et al., 2002; Heese et al., 2001). The

model was successfully used to predict the development of a large filament and then detected

by OHP lidar at 445 K (Godin et al., 2002).
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The chemical fields of the MIMOSA-CHIM model are initialized by the 3-D CTM

REPROBUS output fields interpolated on isentropic levels and are advected along with

PV with a time step of one hour. PV is assumed to be conserved for up to two weeks on

isentropic surfaces in the lower stratosphere. For longer simulations, the diabatic transport

of air across isentropic surfaces, as well as the diabatic evolution of PV, have to be taken

into account. Diabatic mass fluxes are computed from the heating rates calculated using the

radiation scheme of the SLIMCAT model taken from MIDRAD (Chipperfield et al., 1999).

Climatological water vapour, CO2 and interactive ozone fields (taken from the model itself)

are used for the calculation of heating rates. The MIMOSA PV field is relaxed towards the

ECMWF PV field with a time constant of 10 days. MIMOSA PV fields are smoothed to

the same resolution as ECMWF fields and the difference between the two fields is used to

compute the relaxation term.

Isentropic vertical coordinate is used in the model with sixteen levels from 350 K and

950 K, yielding a vertical resolution of about 1.5 km in region below 500 K and a little more

(between 1.5 to 2 km) in the region above 500 K. The horizontal resolution of the model is

1◦ in latitude and longitude. In the present version, the model domain is centered at the pole

and extends up to 60 degrees of latitude i.e. the latitude range of the simulation is 30◦N (S) –

90◦N (S) for Arctic (Antarctic) simulations. To take into account the influence of air masses

originating from regions outside of the model domain, PV fields of ECMWF and chemical

fields of REPROBUS are used for the forcing at the boundary of the model. The complete

REPROBUS fields are generally available once a month, so they are interpolated in time for

the forcing at the boundary. Sensitivity studies have shown that there is negligible effect of

forcing, either using actual REPROBUS data or even climatological fields, on the ozone loss

inside the vortex.

The model includes the chemical scheme of REPROBUS. This scheme includes 55 chem-

ical species and calculates about 160 reactions including gas phase, heterogeneous, and

photolytic reactions (Lefèvre et al., 1994, 1998). The REPROBUS value of BrOx is based

on a correlation with CFC-11 that considered supply of bromine from CH3Br, halons, as

well as CH2Br2 and CH2BrCl [Wamsley et al., 1998]. The updates of JPL-2003 recom-

mendations are implemented that made the changes in the rates of the reactions shown

in Annex 1.

The model has a detailed scheme of PSC formation and growth. The saturation vapour

pressure given by Hanson and Mauersberger (1988) is used to assume the existence of NAT

particles and Murray (1967) for water-ice particle. A denitrification scheme is introduced

to account for the sedimentation of HNO3 containing particles where the NAT particles are

assumed to be in equilibrium with gas-phase nitric acid. All the three types of particles – NAT,

Ice, and Liquid Aerosols – are considered for the sedimentation. The sedimentation speed of

particles is calculated according to Pruppacher and Klett (1997). A constant number density

(5.0 × 10−3 cm−3) of NAT particles is considered for the analysis (Waibel et al., 1999).

To capture early ozone depletion in 2002–2003, we started the run from November 1,

2002 whereas for the year 1999–2000 the model was started in mid-December. Antarctic

runs start from May 1st to the end of November.

3. Main features of Arctic ozone loss in 1999–2000, 2002–2003 and 2001–2002

3.1. Polar stratospheric cloud area

The Arctic polar stratospheric temperature in 1999–2000 and 2002–2003 winters were ex-

tremely low as compared to winter temperature in 2001–2002, which led to the extensive
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Fig. 1 Upper panel: Geographical area in square kilometres of northern hemisphere with possible exis-
tence of polar stratospheric clouds (temperature below the NAT formation temperature TNAT) for 1999–
2000, 2002–2003 Arctic winters. Lower panel: time series of cumulative ozone loss (unit) as a function
of potential temperature calculated from MIMOSA-CHIM for the Arctic winter 1999–2000 and 2002 –
2003

formation of polar stratospheric clouds (PSC). First panel of Figure 1 shows the geographical

area APSC of the stratosphere where PSC are likely to form, for these 2 winters. Note that the

figure starts from December 15th in the case of 1999–2000 and November 10th in the case

of 2002–2003. APSC is defined as the area characterized by temperatures less than the NAT

(Nitric Acid Trihydrate) formation temperature TNAT, based on the temperature and pressure

fields of ECMWF interpolated to the MIMOSA grid. TNAT is calculated from the formula of

Hansen and Mauersberger (1988). For water vapour partial pressure, a uniform mixing ratio

of 4.6 ppmv is assumed. The nitric acid partial pressure is calculated from a nitric acid mixing

ratio profile measured by the Limb Infrared Monitor of the Stratosphere (LIMS) (Gille and

Russell, 1984).

In both winters, 1999–2000 and 2002–2003, the figure shows that a large stratospheric

area characterized by temperature less than TNAT existed between 425 and 600 K potential

temperatures. In 1999–2000, low stratospheric temperature leading to the formation of PSC

existed from mid-December to mid-February at each level. A low temperature period at the

end of February and early March was also observed but the low temperatures were limited

to lower levels. In the winter 2002–2003, the temperature was very low from the end of

November and beginning of December and a large area prone to the formation of PSC

particles existed in early December. The early PSC formation in the Arctic 2002–2003 was
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also observed by the SAGE III instruments (Poole et al., 2003). This cold spell extended up

to mid–January.

3.2. Denitrification

Denitrification enhances accumulated ozone loss by removing HNO3, which otherwise would

deactivate ClO into reservoir species ClONO2 by releasing NO2 (Salawitch et al., 1993;

Waibel et al., 1999). In their paper Gao et al. (2002) have documented the first experimental

evidence that denitrification enhances ozone loss. Modeling studies have also shown a sig-

nificant effect in polar ozone loss due to sedimentation. Tabazadeh et al. (2000) used a box

model and showed that the maximum additional ozone loss due to severe denitrification is

limited to 30%. Brasseur et al. (1997) using a 3-D CTM, calculated 20% more ozone loss

due to denitrification in the Antarctic. Due to long period of extremely low temperature,

widespread denitrification in the Antarctic polar vortex has been reported in various experi-

mental observations (Santee et al., 1995, 1998; Waibel et al., 1999; Fahey et al., 1989; Brune

et al., 1991; Tabazadeh et al., 2000). In the Arctic vortex, which remains much warmer and

disturbed than the Antarctic one, the denitrification is not so intense (Hubler et al., 1990;

Fahey et al., 1990; Hintsa et al., 1998; Kondo el al., 1999; Dessler et al., 1999; Waibel et al.,
1999; Santee et al., 1999, 2000). But in cold winters significant denitrification does occur

in the Arctic as well. In the Arctic winter 1999–2000, satellite and in situ measurements

of NOy showed extensive denitrification around 465 K potential temperature level (Santee

et al., 2000, Fahey et al., 2001).

Significant denitrification was simulated by MIMOSA-CHIM between 400 and 600 K

in 1999–2000 and between 450 and 650 K in 2002–2003. In the former winter, vortex air

was found to be denitrified by 67% in January, 71% in February and 74% in March. In the

latter winter, the sedimentation of PSC particles started in early December. The vortex air

between 475 and 500 K potential temperature was already denitrified by 68% at the end of

December. Denitrification reduced to 30 and 16% in February and March respectively. This

is in contrast to 1999–2000, when in March the level of denitrification was at its maximum

level of 74%. The early December PSC particle growth in 2002/2003 was also observed in

SAGE-III instrument (Poole et al., 2003) and is well simulated in our model.

3.3. Chemical ozone loss

Cumulative ozone loss in MIMOSA-CHIM is calculated as the difference between simulated

ozone and a passive tracer advected by the MIMOSA advection scheme using ECMWF wind

fields. At the start of the run, both active and passive ozone are initialized at the same level from

the output of the 3D-chemical transport model REPROBUS. The time series of cumulative

ozone loss calculated from the model for 1999–2000 and 2002–2003 is shown from 400

to 650 K in the bottom panels of Figure 1. From the figure it is clear that the two winters

differ considerably in time and levels of the onset of colder spell and consequently in ozone

loss. In 1999–2000, the maximum ozone loss was reached between 400 and 475 K whereas

during 2002–2003, it was reached at higher levels. The maximum ozone loss for 1999–2000

at 475 K was found to be 1.9 ppm and at 450 K about 2 ppmv at the end of March.

Low temperature in December 2002 triggered very early chlorine activation and conse-

quently early onset of ozone depletion. About 0.3 ppmv of ozone loss is calculated in the

first part of December and 0.5 ppmv at the end of December at 475 K and above. This much

of December ozone depletion in the Arctic lower stratosphere is uncommon (Goutail et al.,
2005). The centre of ozone loss in 2002–2003 is shifted upward in comparison to 1999–2000,
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and this is in agreement with the location and timing of APSC and chlorine activation. The

cumulative ozone loss increases to 0.8 ppmv in January and reaches 1.5 ppmv at 450 K during

March as shown in Figure 1. Singleton et al. (2005) reported a maximum of 1.2 ppmv of

ozone loss by March 15 at lower level (425 K) using 3-D chemical transport model SLIM-

CAT. It should be noted that during 2002–2003 in MIMOSA-CHIM, the maximum ozone

loss occurred at higher level approximately above 450 K.

The 2001–2002 Arctic winter was much warmer than the other two and the ozone loss

simulated by the model was small. The cumulative total ozone loss reached only 10% inside

the vortex core at the end of March. This, when compared to both other Arctic winters,

indicates the extent of inter-annual variability of Arctic winter/spring stratospheric ozone

depletion.

To understand the effect of denitrification on ozone loss in the model, we have compared

the ozone loss as a function of equivalent latitude with and without the sedimentation scheme.

When the sedimentation scheme was made off for the winter 1999–2000, the maximum ozone

loss at 450 K within the vortex decreased from 70% to 62% during this period. At 475 K

also, less ozone loss (50% as compared to 63%) was found. This shows that the effect of

denitrification was larger at 475 K, where the ozone loss was enhanced by around 23% as

compared to 17% at 450 K. In terms of mixing ratio, denitrification was found to induce 0.2

to 0.4 ppm extra ozone loss at these levels. The January ozone loss during 2002–2003 inside

the polar vortex at 475 K reached 23% at the end of the month and 42% at the end of March.

About 29 to 30% ozone loss was calculated at this level when the sedimentation scheme was

made off. At 450 K, similar values were found, so denitrification was found to enhance ozone

loss by about 12 to 17% during that winter.

As for other model studies are concerned, a chemical ozone depletion of up to 60% was

also derived in the 425–450 K potential temperature range from February 12 to March 20

2000 by Grooβ et al. (2002) using the Chemical Lagrangian Model (CLaMS). Their model

initialization was based on observations from satellite, balloon and ER-2 measurements.

Davies et al. (2002) reported 56–74% ozone loss at 460 K from the 3-D chemical transport

model SLIMCAT by the end of March, however, the model was found to be sensitive to

the meteorological fields, giving significantly different ozone losses when forced by two

different sets of data UKMO and ECMWF.

3.4. Effect of model resolution

In this section, the advantage of using a high model resolution is discussed. The present

version with 1◦ resolution is a compromise between resolution and reasonable computer

time. To test the advantage of a relatively high horizontal resolution, the ozone loss in the

1999–2000 Arctic winter was simulated with one, two and four degree horizontal resolutions.

The mean percentage ozone loss as a function of equivalent latitude at 475 K isentropic level

was then compared. Concerning the start of chemical ozone loss in January, the one and

two degree resolution does not show much difference. But when the resolution is reduced

to four degrees the equivalent-latitudinal belt of ozone depletion region near the vortex edge

increases at the cost of slightly decrease in ozone loss. This shows the advantage of running

the model at high resolution to capture the ozone loss at the edge of the polar vortex at high

solar zenith angle. On January 15, the maximum ozone loss is 10% in the case of 1◦ resolution

and around 8% in both other cases. The difference between maximum simulated ozone loss

increases during the course of the winter: in March, the maximum ozone loss for 1◦ resolution

reaches 63%, as compared to 59% and 52% for 2◦ and 4◦ resolution respectively. This about

10% difference in overall ozone loss inside the vortex in March between 1◦ and 4◦ resolution
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may lead to significant difference when the vortex mean ozone loss or ozone loss rates are

computed for comparison with observations. Change in resolution affect the photo-chemistry

between the adjacent grid because of difference in solar zenith angle and it also affects the

PSC formation and chemistry due to differences in temperature between the adjacent grid

points. These differences reflect in ozone loss through the numerical diffusion induced by

the regridding process, despite the use of an interpolation scheme designed to minimize this

diffusion as described in Section 2. They have to be considered when using chemical scheme

within low-resolution climate model to deduce ozone loss.

4. Simulations of Arctic ozone loss: Comparison with observations

4.1. Comparison with ER-2 flight data

In order to validate the model outputs within the polar vortex, we compared the model results

with observations made from the instruments integrated on the ER-2 aircraft during winter

1999–2000. To simulate the ER-2 observations, we adopted a closest approach method. This

method consists of capturing the observation in the model simulation by approaching the

event spatially and temporarily as close as possible within the limit of the resolution of the

model. The coordinate of the location of each measurement, including complete temporal

and spatial information, is fed to the run of the MIMOSA-CHIM model. The time resolution

of the advection process of the model is one hour but the chemical scheme runs four times in

an hour, so results for the concentration of the chemical constituents can be obtained every

15 min. The maximum time difference between measurement and model results can thus

not exceed this time interval. As the spatial resolution of MIMOSA-CHIM is 1◦ × 1◦, each

measurement can be reached within 0.5◦ in latitude and longitude. We calculated the distance

between the point of measurement and each grid point of the model at the isentropic level

nearest to the measurement level to get the closest point. The value of chemical species at

this point is interpolated linearly in vertical direction to reach the level of the measurement.

ER-2 flight data are very close in space and time as compared to MIMOSA-CHIM temporal

and spatial resolution. That is why fewer model results are obtained in comparison to many

ER-2 flight records and some gaps are seen in the plots.

Three flight dates were selected for the comparison (January 20, February 2 and March 7,

2000) when the aircraft flew through the vortex. The comparison for ozone, ClO, N2O(Argus)

and NOy for all these dates are shown in Figure 2. The instrument used to measure ozone was

a Dual-Beam UV-Absorption Ozone Photometer (Proffitt and McLaughlin, 1983) with 3%

accuracy and 1.5 × 1010 molecules/cm3 of precision. The ClO was measured by the technique

of chemical conversion, vacuum ultraviolet resonance fluorescence, having the accuracy of

±17% (1 sigma) and a detection limit of 3 pptv (Stimpfle et al., 2004). Argus, a two channel

tunable diode laser instrument was used for N2O measurements. The precision for N2O Argus

was estimated to 2.7% (2 sigma) and the accuracy 6.4% (Hurst et al., 2002, Table 3). The

instrument used to measure NOy has three independent chemiluminescence detectors for

simultaneous measurements of NOy , NO2, and NO utilising the reaction between NO in the

sample with reagent O3. The estimated accuracy of the NOy measurement was estimated to

±10%, and the precision (1 sigma at 1 Hz) to ± 40 pptv (Fahey et al., 1989a). The top row

of the figure represents the altitude of the flight in terms of potential temperature and the

potential vorticity at the location of the measurement. Passive tracers like N2O are governed

by isentropic transport processes and subsidence. The discrepancy between the modelled

and observed N2O are found to be due to the cooling rates calculated by the MIDRAD
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Fig. 2 Time series comparison of MIMOSA-CHIM ozone, ClO, N2O, and NOy with the data from ER-2
flight observations for January 20 (first column), February 2 (second column), and March 7 (third column),
in winter 2000 Arctic vortex. Top panel of each column shows the height of the flight in terms of potential
temperature and potential vorticity of the point of observation, followed by ozone (in ppmv), ClO (in ppbv),
N2O (in ppbv), and NOy (in ppbv). Three model scenario results were compared against the observations. (i)

Background case, particle density as 5 × 10−3 cm−3 (ii) Optimization of heating rates and particle density
where the calculated heating rate was increased by 50% and the particle density was taken as 10 × 10−3 cm−3

(iii) Optimization with “Burkholder JCl2O2” values

radiative scheme. By comparing REPROBUS N2O fields with the MIMOSA-CHIM it is

found that this discrepancy is not due to initialisation. In order to test the ability of the model

to simulate correctly the chlorine activation and chemical ozone loss within the vortex, we

attempted to obtain the best agreement with observed N2O in order to avoid discrepancies

due to underestimation or overestimation of subsidence processes. It was found that when

cooling rates were uniformly increased by 50%, the modelled and observed N2O were in

better agreement for all the flights. Depending on the location, the corresponding changes

in the heating/cooling rates vary from 0.15 to 0.25 K per day and it decreases overall N2O

by about 20 ppbv around 450 K. N2O varies almost linearly with potential temperature in

the 400–480 K region as shown in Figure 2 of Greenblatt et al. (2002). The 20 ppbv change

in N2O is equivalent to about 10 K in potential temperature. Tests showed that increasing

heating rates did not play any significant role in NOy distribution. Sensitivity tests were

also made by changing the prescribed particle density for NAT particles in the REPROBUS

chemical scheme in order to optimize the comparison with NOy measurements. A doubling

of the NAT particle density leads to a significant increase in NOy i.e. less denitrification. It

was then found that a particle number density of 10−2 cm−3 (5 × 10−3 in background run)

along with 50% increase of heating rate was the best combination to simulate observed NOy

and N2O. This combination is called optimum model condition. Finally, simulations were

made with the photodissociation coefficient of Cl2O2 (JCl2O2) computed from the absorption
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cross-section of Burkholder et al. 1990, in order to assess in our simulation the recent work

of Stimpfle et al. (2003). In this article, the authors showed that the use of the reaction rate

for the production of Cl2O2 recommended by JPL (2003) is consistent with observations

only if JCl2O2
is calculated with absorption cross sections larger than those recommended by

JPL, as those measured by Burkholder et al. 1990. Such simulations along with optimised

heating rates and particle density are labelled “Burkholder JCl2O2
” while simulations without

any changes are called background simulations.

Model ozone with the optimum scenario is found to be in better agreement with ER-2 flight

data for January 20 and February 2, 2000. Out of both changes in the model scenario - heating

rates and particle number density – the change in heating rates has the largest impact on ozone

loss through the amount of subsided ClOx . The use of “Burkholder JCl2O2
” does not induce

much difference on ozone (overlapping of curves). At the same time active chlorine increased

on these dates and “Burkholder JCl2O2
” enhances it further. The fact that more NOy gives

more NOx and consequently less ClO, may explain the overestimation of ClO on February

2 and March 7 because we have less NOy on these dates. Concerning ClO, optimum and

“Burkholder JCl2O2
” simulation tend to enhance active chlorine. It is clear that the optimum

scenario increases chlorine activation all along January through March. Up to the end of

January (high solar zenith angle) the “Burkholder JCl2O2
” enhances it further but after that it

ceases to affect chlorine activation. To better understand some minor discrepancies we must

also consider the corresponding vertical location of the aircraft, since the model data were

linearly interpolated as a function of potential temperature. Some deviations in the plots may

be attributed to this effect. However, the generally good agreement of the model results with

ER-2 observations shows that MIMOSA-CHIM is able to reproduce quantitatively ozone

mixing ratio and related species in the Arctic polar vortex, at least in the lower stratosphere.

4.2. Comparison with the EUPLEX data set

Measurements of gas-phase composition of Arctic polar stratospheric air have been made

during Arctic winter 2003 from dedicated flights of a unique high-altitude aircraft (M55-

Geophysica) equipped with a comprehensive set of in-situ instruments under the framework

of European project EUPLEX. For the comparison with MIMOSA-CHIM simulations, we

used the same method of data sampling as for the comparison with ER-2 data sets. The

results of the comparison for ozone, ClO, N2O and NOy on three dates (January 15, January

23, and February 6, 2003) are displayed in Figure 3. Ozone measurements are from the

FOX instrument which is a UV absorption photometer. The accuracy is of the order of 5%.

ClO was measured by the HALOX instrument, using the Chemical Conversion Resonance

Fluorescence technique (von Hobe et al., 2005). Precision and accuracy of the N2O measure-

ments vary from flight to flight but generally the accuracy is somewhat better than 20% and

precision is close to 10%. N2O was measured by HAGAR (High Altitude Gas AnalyzeR)

by gas chromatography (Volk et al., 2006). The precision of N2O measurements varies from

flight to flight (up to 4 ppb, see Volk et al., 2006) and the absolute accuracy for the flights

is between 1 to 2%. The NOy instrument consists of a catalytic converter to reduce higher

nitrogen oxides to NO and NO is then detected by using the NO-O3 chemiluminescence

technique (Voigt et al., 2004). The accuracy is estimated to 15%. All the model scenario

results discussed in the previous paragraph are shown in the Figure. The optimum scenario

corresponds to the same uniform increase of 50% of the cooling rates and as in 1999–2000

and optimised N2O are in better agreement with observed data. The various scenarios have

rather small effect on the ozone fields except on January 15 when the background simulation

gives a better agreement with observations. In other cases, the agreement between simulated
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Fig. 3 Time series comparison of MIMOSA-CHIM ozone and ClO mixing ratios, with data from M55-
Geophysica flights (EUPLEX) observations for January 15 (first column), January 23 (second column) and
February 6 (third column) in the Arctic winter 2003. Top panel of each column shows the height of the flight in
terms of potential temperature and potential vorticity of the point of measurement, followed by ozone mixing
ratio (in ppmv), ClO mixing ratio (in ppbv), N2O mixing ratio (in ppbv) and NOy mixing ratio (in ppbv)

and observed ozone amounts is good, except on the second leg of the flight performed on

January 23 where the simulated ozone values are overestimated for all the scenarios. As in

1999–2000, ClO activation is generally more pronounced in the optimisation scenarios as

compared to the background case. On January 15 and February 6, the maximum observed

ClO levels are between the optimum and background cases. Similarly to the 1999–2000

Arctic winter, the simulation with the “Burkholder JCl2O2
” photodissociation coefficient re-

sults in a small overestimation of ClO amount. Concerning NOy , the optimisation results, as

expected, in a general increase of the NOy values. However, despite this increase, simulated

NOy values still underestimate the observed ones, except on January 15, which shows that

the parameters to be chosen in the NAT formation scheme can vary from one winter to the

next.

4.3. Comparison with ozonesonde data

Model results were also compared to ozonesonde measurements at the Ny-Ålesund station

(78.5◦N–11.8◦E) for the Arctic winters 1999–2000 and 2002–2003. The comparisons were

performed at the 450 K isentropic level. Figure 4 shows the time series of the modelled ozone

mixing ratio over this station together with the observed ozone values from ozonesonde

measurements. Model calculations for 1999–2000 show cumulative ozone loss similar to

the experimental observations particularly after mid-February. Here also the different model
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Fig. 4 Comparison of model ozone values (line curves for different model scenario) with observations from
ozonesondes (circles) at 450 K isentropic level for the Arctic station Ny-Ålesund during the Arctic winter
1999/2000 and 2002/2003. Along with given is the geographical locations and name of the stations. BG:
Background run, OP: Optimized run, OJ: Optimized run with Burkholder JCl2O2

scenarios described in Section 4.1 are displayed. The figure shows that for the winter 1999–

2000, the best agreement is obtained with the optimized “Burkholder JCl2O2
” case. All sce-

narios underestimate the ozone increase due to the subsidence but the ozone decrease in

March is well simulated. In 2002–2003, the optimized scenarios overestimate the observed

ozone values in contrast to the winter 1999–2000. The effect of subsidence on ozone is

also weaker during this winter. The best agreement between simulated and observed ozone

values is obtained for this winter with the background scenario. The measurements show

that the ozone destruction was much weaker during this winter than in 1999–2000. Besides,

the difference between optimized “JPL JCl2O2
” and optimized new JCl2O2 scenarios is very

small. The difference between these scenarios and the background case is dominated by the

adjustment of the heating rates.

4.4. Integrated ozone loss

The structure and strength of polar vortex is different at different isentropic levels. To evalu-

ate the integrated column ozone inside the vortex, we calculated the column ozone between
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Table 1 Integrated ozone loss between December 15 and end of the March
in different model scenario

Arctic winters 1999–2000 2002–2003

Model scenarios DU % DU %

Background (350–950 K) 70.43 18.78 59.04 10.38

(400–550 K) 62.40 33.02 51.78 22.17

Burkholder JCl2O2 (350–950 K) 75.89 20.20 61.67 10.94

(400–550 K) 66.42 35.05 54.07 23.16

Optimum (350–950 K) 81.07 19.50 74.64 11.04

(400–550 K) 69.17 32.54 60.04 21.02

Opt. with Burkholder J (350–950 K) 88.55 21.23 78.55 11.73

(400–550 K) 74.00 34.68 62.73 21.95

68◦ and 88◦ of northern geographical latitude, in order to select ozone values approximately

always inside the vortex. The column ozone loss was computed for the Arctic winters 1999–

2000 and 2002–2003. The different model scenarios, as discussed in Section 4.1, were used

and the results are shown in Table 1. The table displays also partial column ozone loss

between 400 and 550 K isentropic level, the region where maximum chemical ozone loss

generally takes place. The column ozone loss is given both in percentage as well as in DU.

Column ozone loss in percent during 1999–2000 is approximately two times that of the

loss during 2002–2003, while the difference in absolute ozone loss is smaller. The strik-

ing difference between the two Arctic winters is that the mean transported column ozone

(ozone tracer without chemistry) at the end of March 2002–2003 was more than 500 DU

(between 500 to 515 DU from March 25 and March 31) whereas in 1999–2000 it was

only between 375 to ∼390 DU during the same period. Total ozone measured by TOMS

in January 2003 also shows values larger than 500 DU in the Arctic region. The discrep-

ancy between both winters is due to the difference in the strength of the polar vortex during

these two years and consequently the ozone transport towards the polar region in the win-

ter/spring season. The 2002–2003 polar vortex was weaker in comparison to 1999–2000

and there was more ozone transport. The table shows that the largest ozone losses are ob-

tained with the optimized “Burkholder JCl2O2
” scenarios in both winters. The difference

between this scenario and the background one is on the order of 18 DU for both win-

ters, corresponding to 25% and 30% additional ozone loss for 1999–2000 and 2002–2003

respectively.

For the Arctic winter 1999/2000, the model column ozone loss of optimization with

“Burkholder JCl2O2
” (88.55 DU total and 74 DU partial 400–550 K) is well compared with

the result of Rex et al. (2002). They report 88 ± 13 DU of ozone loss by 28 March 2000 in the

range 400–580 K using the Match technique from ozonesonde observations. The accumulated

total ozone loss derived from SAOZ data and REPROBUS inert tracer reached 105 DU

from January 2 to March 25, 2000, while that derived from POAM III measurement and

REPROBUS was on the order of 80 DU in the range 380 K to 700 K (Harris et al., 2002).

In their comparison paper Harris et al. (2002) also reported 85 ± 10 DU of ozone loss

between November 1999 to mid-March with the HALOE tracer correlation approach. For

the 2002–2003 Arctic winter Christensen et al. (2005) estimated 68 ± 7 Dobson units of

ozone loss between 380 and 525 K from 10 December 2002 to 10 March 2003, which is

very close to our calculation between 400 and 550 K (∼63 DU) with both optimized model

scenarios.
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Fig. 5 Ozone mixing ratio evolution at 475 K in winters 2001 and 2002 as measured by the POAM III
instrument and compared with the MIMOSA-CHIM model results (left panels: with “JPL-2002 JCl2O2 ”, right
panels: with “Burkholder JCl2O2 ” values).

5. Antarctic simulations and comparison with observations

For the simulation of the Antarctic polar ozone loss, we concentrated on the winters 2001,

2002 and 2003. Simulated Antarctic ozone levels in 2002 were compared with observations

and with the simulation performed in the “normal” Antarctic winter 2001. Although the wave

activity and splitting of the polar vortex occurred in the upper stratosphere (above 600 K)

and the lower levels were less affected, the extra-vortex air mass intrusion was observed at

various levels and ozone mixing ratios between 400 and 500 K were higher in comparison

to the other Antarctic winters (Manney et al., 2003; Randall et al., 2003; Konopka et al.,
2003). The evolution of the simulated ozone mixing ratio at 475 K is compared with that of

the POAM III observations in Figure 5. POAM III instrument on board the French SPOT

4 satellite was developed by the Naval Research Laboratory (NRL) to measure the vertical

distribution of ozone and other parameters using the solar occultation technique. POAM III

data are available as a vertical profile of ozone number density in altitude range from 7 km to

60 km. Each day observations were taken at different locations inside the vortex, providing

up to 14 data profiles per day. The model ozone values at 475 K were interpolated using

the latitude and longitude of each POAM III data. Two simulations, with “JPL JCl2O2
” and

“Burkholder JCl2O2
” as described in Section 4.1 were made for the comparison. There was

no adjustment of the heating rates. The simulations with old and “Burkholder JCl2O2
” are

shown in the left and right panels of the figure respectively. The figure shows that the model

Springer



220 J Atmos Chem (2006) 55:205–226

Fig. 6 Comparison of simulated ozone values at 450 K with “JPL JCl2O2 ” and “Burkholder JCl2O2 ” with ozone
sonde measurements at various Antarctic stations during the winter 2003. Location and names of the stations
are given in each panel of the figure

in the beginning of 2001 underestimates the ozone-mixing ratio, which is due to low values

in the ozone initialization fields. However, the rapid decrease of ozone during the ozone

hole period is rather well simulated for both winters. It is visible in both cases that the use

of Cl2O2 cross-sections from Burkholder et al. (1990) gives a better estimate of the ozone

loss rate at the end of the ozone destruction period (from the second half of September up

to the beginning of October). This can be explained by the fact that the latitude of POAM

III measurements during this period ranges from 80◦ S to 89◦ S, so the satellite samples

the ozone destruction at rather large solar zenith angle. After the ozone destruction period,

simulations with “Burkholder JCl2O2
” values have a larger tendency to underestimate POAM

III ozone values, as the satellite moves towards lower latitudes and lower solar zenith angles.

The splitting of the ozone hole in 2002 and consequently the abrupt increase in the ozone

values are well simulated by the model although some discrepancies with the experimental

data can be seen.

Coordinated ozonesonde measurements at various Antarctic stations during the Antarctic

winter 2003 were made in the framework of the QUOBI project (Streibel et al., 2004). We

selected six Antarctic stations including South Pole for the comparison of the simulation

results for that winter. Two simulations with “JPL JCl2O2
” and “Burkholder JCl2O2

” were

performed. The stations are south of 65 degrees latitude and so most of the time during
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the winter/spring season, they are inside the polar vortex. The comparison results for these

stations are displayed in Figure 6. It shows that the modelled ozone values are generally

in good agreement with the observations, despite a slight overestimation of ozone during

the wintertime in some stations like South Pole or Syowa and a general underestimation of

the ozone decrease rate at the end of September. The simulations with “Burkholder JCl2O2
”

show lower ozone values during that period but still an overestimation as compared to the

observations.

6. Discussion and conclusion

The 3-D chemical transport model MIMOSA-CHIM was used to simulate the chemical

ozone loss in Arctic winters 1999–2000, 2001–2002, and 2002–2003 and Antarctic winters

2001, 2002 and 2003. The Arctic winters 1999–2000 and 2002–2003 were both excep-

tional with long duration of cold spells in 1999–2000 and early onset of low temperature in

2002–2003. In 1999–2000, a significant ozone loss of around 2 ppmv was found at 450 K

and 1.9 ppmv at 475 K isentropic levels in March 2000 inside the polar vortex. The den-

itrification was found to induce about 23% extra ozone loss during that winter at 475 K.

Low temperature and early chlorine activation in 2002–2003 triggered ozone loss from

December itself. Early December ozone loss was observed for the first time ever since sys-

tematic observations and studies of the Arctic ozone depletion started and this event was

well simulated by the model. In 1999–2000, denitrification reached a maximum of 74% in

March as compared to 62% in January 2003 and 16 to 20 percent in February and March

2003.

In 2002–2003, the ozone depletion started in early December and was at higher levels as

compared to the 1999–2000 winter. The maximum ozone loss in the core of the vortex reached

around 37–40% at the end of March. The simulation showed that the effect of denitrification

for 2002–2003 was not as pronounced as in 1999–2000, providing 12 to 17% additional

ozone loss.

The simulation results for the winters 1999–2000 and 2002–2003 were compared with

O3, ClO, N2O and NOy observations made on board the ER-2 and the Geophysica aircrafts

respectively, when the aircrafts flew within the vortex. The flight altitude range was generally

limited to about 475 K potential temperature level. The comparisons included several sensi-

tivity tests on the heating rates calculated by the model, the particle number density used in

the denitrification scheme and the Cl2O2 absorption cross-section. Reactive parameters like

ClO, ozone and NOy were compared with observations once the heating rates of the model

were adjusted in order to reach the best agreement with observed N2O levels. Results showed

that the use of the same parameters for the model simulation in both winters had a different

effect from one winter to the next. In the first winter, the subsidence adjustment induced a

better agreement between simulated and observed ozone values with a slight underestimation

but at the expense of an overestimation of ClO, especially in March where the overestima-

tion reaches about 20%. NOy levels were better simulated with a particle number density

of 10−2 cm−3 as compared to 5 10−3 cm−3. In the winter 2002–2003, the same adjustments

induced on the contrary a slight overestimation of ozone along the flight track and a smaller

overestimation of ClO levels as compared to the previous winter. The agreement with ob-

served NOy levels was not as good especially at the end of January and beginning of February

when the simulation underestimated NOy by about 25% in some part of the flight tracks. The

effect of using Burkholder et al. (1990) Cl2O2 absorption cross-section was most pronounced

at large solar zenith angle, particularly in 1999–2000. Simulated ozone values were also com-

pared to observations from ozone soundings performed over the station of Ny-Ålesund in
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the same winters. The best comparison was obtained in 2002–2003 with the background

model scenario while in 1999–2000 observed ozone values were underestimated by the

model in January. Yet, a very good agreement on the ozone decrease during February was

obtained.

The splitting of the Antarctic polar vortex at the end of September 2002 was well simulated

by the model and was compared with POAM III data along with the more usual Antarctic

winter 2001. Ozone values from ozonesonde observations performed at six Antarctic stations

were found to be in rather good agreement with model ozone values in the 2003 Antarctic

winter, despite a small underestimation of the ozone loss rate at the end of the ozone de-

struction period in the second half of September. A sensitivity test on the Cl2O2 absorption

cross-sections showed that the ozone decrease from mid-August to the end of September

is better simulated with the use of Burkholder et al. (1990) absorption cross-sections but

at the expense of a somewhat larger underestimation of ozone inside the vortex in October

2002.

These results show the capacity of the MIMOSA-CHIM model to simulate polar ozone

loss in the Arctic and in the Antarctic with an accuracy of about 20 to 30%, depending on

the winter. The spatial resolution of 1◦ × 1◦ was found to provide a better evaluation of

the ozone loss, particularly at the edge of the polar vortex at high solar zenith angle. Our

results are in agreement with other state-of-the-art models and observations but the model

requires several improvements particularly on the radiative scheme used to infer diabatic

transport across isentropic levels. The heterogeneous chemistry scheme can also be refined

in order to take into account the nucleation and growth of polar stratospheric clouds. Im-

provement of the model representation of chemical and dynamical processes should benefit

from the use of data from ENVISAT and other satellite missions like Aura launched in

July 2004. Taking into account the present high levels of chlorine and bromine compounds

in the stratosphere and the uncertainties on the long-term evolution of the stratosphere

in relation with increasing greenhouse gases in the atmosphere, the monitoring of polar

ozone loss by validated models and experimental methods will continue to be an important

issue.

Annex 1

OH + O3 → HO2 + O2 (JPL 2003)

HO2 + O3 → OH + O2 + O2 (JPL 2003)

OH + NO2 + M → HNO3 + M (JPL 2003)

N2O5 + M → NO2 + NO3 + M (JPL 2003)

CH3O2 + NO → CH3O + NO2 (JPL 2003)

CH2O + OH → HCO + H2O (JPL 2003)

HCO + O2 → CO + HO2 (JPL 2003)

CH3O2 + CH3O2 → 2 CH3O + O2 (JPL 2003)

CLO + OH → HCL + O2 (JPL 2003)

CLO + HO2 → HOCL + O2 (JPL 2003)

CLO + CLO + M → CL2O2 + M (JPL 2003)

OH + CH3CCL3 → CH2CCL3 + H2O (JPL 2003)

OH + CH3CL → CH2CL + H2O (JPL 2003)

OH + CH3Br → CH2Br + H2O (JPL 2003)

HO2 + HO2 → H2O2 + O2 (Christensen et al., 2002)

O1D + N2 → O + N2 (Ravishankara et al., 2002)
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