96 research outputs found
Correlative Microscopy of Morphology and Luminescence of Cu porphyrin aggregates
Transfer of energy and information through molecule aggregates requires as
one important building block anisotropic, cable-like structures. Knowledge on
the spatial correlation of luminescence and morphology represents a
prerequisite in the understanding of internal processes and will be important
for architecting suitable landscapes. In this context we study the morphology,
fluorescence and phosphorescence of molecule aggregate structures on surfaces
in a spatially correlative way. We consider as two morphologies, lengthy
strands and isotropic islands. It turns out that phosphorescence is quite
strong compared to fluorescence and the spatial variation of the observed
intensities is largely in line with the amount of dye. However in proportion,
the strands exhibit more fluorescence than the isotropic islands suggesting
weaker non-radiative channels. The ratio fluorescence to phosphorescence
appears to be correlated with the degree of aggregation or internal order. The
heights at which luminescence saturates is explained in the context of
attenuation and emission multireflection, inside the dye. This is supported by
correlative photoemission electron microscopy which is more sensitive to the
surface region. The lengthy structures exhibit a pronounced polarization
dependence of the luminescence with a relative dichroism up to about 60%,
revealing substantial perpendicular orientation preference of the molecules
with respect to the substrate and parallel with respect to the strands
Strong evidence that the common variant S384F in BRCA2 has no pathogenic relevance in hereditary breast cancer
INTRODUCTION: Unclassified variants (UVs) of unknown clinical significance are frequently detected in the BRCA2 gene. In this study, we have investigated the potential pathogenic relevance of the recurrent UV S384F (BRCA2, exon 10). METHODS: For co-segregation, four women from a large kindred (BN326) suffering from breast cancer were analysed. Moreover, paraffin-embedded tumours from two patients were analysed for loss of heterozygosity. Co-occurrence of the variant with a deleterious mutation was further determined in a large data set of 43,029 index cases. Nature and position of the UV and conservation among species were evaluated. RESULTS: We identified the unclassified variant S384F in three of the four breast cancer patients (the three were diagnosed at 41, 43 and 57 years of age). One woman with bilateral breast cancer (diagnosed at ages 32 and 50) did not carry the variant. Both tumours were heterozygous for the S384F variant, so loss of the wild-type allele could be excluded. Ser384 is not located in a region of functional importance and cross-species sequence comparison revealed incomplete conservation in the human, dog, rodent and chicken BRCA2 homologues. Overall, the variant was detected in 116 patients, five of which co-occurred with different deleterious mutations. The combined likelihood ratio of co-occurrence, co-segregation and loss of heterozygosity revealed a value of 1.4 × 10(-8 )in favour of neutrality of the variant. CONCLUSION: Our data provide conclusive evidence that the S384F variant is not a disease causing mutation
SLUG transcription factor : a pro-survival and prognostic factor in gastrointestinal stromal tumour
Background: The SLUG transcription factor has been linked with the KIT signalling pathway that is important for gastrointestinal stromal tumour (GIST) tumourigenesis. Its clinical significance in GIST is unknown. Methods: Influence of SLUG expression on cell proliferation and viability were investigated in GIST48 and GIST882 cell lines. The association between tumour SLUG expression in immunohistochemistry and recurrence-free survival (RFS) was studied in two clinical GIST series, one with 187 patients treated with surgery alone, and another one with 313 patients treated with surgery and adjuvant imatinib. Results: SLUG downregulation inhibited cell proliferation, induced cell death in both cell lines, and sensitised GIST882 cells to lower imatinib concentrations. SLUG was expressed in 125 (25.0%) of the 500 clinical GISTs evaluated, and expression was associated with several factors linked with unfavourable prognosis. SLUG expression was associated with unfavourable RFS both when patients were treated with surgery alone (HR = 3.40, 95% CI = 1.67-6.89, P = 0.001) and when treated with surgery plus adjuvant imatinib (HR = 1.83, 95% CI = 1.29-2.60, P = 0.001). Conclusions: GIST patients with high tumour SLUG expression have unfavourable RFS. SLUG may mediate pro-survival signalling in GISTs.Peer reviewe
An update on the management of sporadic desmoid-type fibromatosis: A European Consensus Initiative between Sarcoma PAtients EuroNet (SPAEN) and European Organization for Research and Treatment of Cancer (EORTC)/Soft Tissue and Bone Sarcoma Group (STBSG)
Desmoid-type fibromatosis is a rare and locally aggressive monoclonal, fibroblastic proliferation characterized by a variable and often unpredictable clinical course. Currently, there is no established or evidence-based treatment approach available for this disease. Therefore, in 2015 the European Desmoid Working Group published a position paper giving recommendations on the treatment of this intriguing disease. Here, we present an update of this consensus approach based on professionals' AND patients' expertise following a round table meeting bringing together sarcoma experts from the European Organization for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group with patients and patient advocates from Sarcoma PAtients EuroNet. In this paper, we focus on new findings regarding the prognostic value of mutational analysis in desmoid-type fibromatosis patients and new systemic treatment options
Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas : expert recommendations from the World Sarcoma Network
Sarcomas are a heterogeneous group of malignancies with mesenchymal lineage differentiation. The discovery of neurotrophic tyrosine receptor kinase (NTRK) gene fusions as tissue-agnostic oncogenic drivers has led to new personalized therapies for a subset of patients with sarcoma in the form of tropomyosin receptor kinase (TRK) inhibitors. NTRK gene rearrangements and fusion transcripts can be detected with different molecular pathology techniques, while TRK protein expression can be demonstrated with immunohistochemistry. The rarity and diagnostic complexity of NTRK gene fusions raise a number of questions and challenges for clinicians. To address these challenges, the World Sarcoma Network convened two meetings of expert adult oncologists and pathologists and subsequently developed this article to provide practical guidance on the management of patients with sarcoma harboring NTRK gene fusions. We propose a diagnostic strategy that considers disease stage and histologic and molecular subtypes to facilitate routine testing for TRK expression and subsequent testing for NTRK gene fusions.Peer reviewe
Integrative DNA methylation and gene expression analysis in high-grade soft tissue sarcomas
BACKGROUND: High-grade soft tissue sarcomas are a heterogeneous, complex group of aggressive malignant tumors showing mesenchymal differentiation. Recently, soft tissue sarcomas have increasingly been classified on the basis of underlying genetic alterations; however, the role of aberrant DNA methylation in these tumors is not well understood and, consequently, the usefulness of methylation-based classification is unclear. RESULTS: We used the Infinium HumanMethylation27 platform to profile DNA methylation in 80 primary, untreated high-grade soft tissue sarcomas, representing eight relevant subtypes, two non-neoplastic fat samples and 14 representative sarcoma cell lines. The primary samples were partitioned into seven stable clusters. A classification algorithm identified 216 CpG sites, mapping to 246 genes, showing different degrees of DNA methylation between these seven groups. The differences between the clusters were best represented by a set of eight CpG sites located in the genes SPEG, NNAT, FBLN2, PYROXD2, ZNF217, COL14A1, DMRT2 and CDKN2A. By integrating DNA methylation and mRNA expression data, we identified 27 genes showing negative and three genes showing positive correlation. Compared with non-neoplastic fat, NNAT showed DNA hypomethylation and inverse gene expression in myxoid liposarcomas, and DNA hypermethylation and inverse gene expression in dedifferentiated and pleomorphic liposarcomas. Recovery of NNAT in a hypermethylated myxoid liposarcoma cell line decreased cell migration and viability. CONCLUSIONS: Our analysis represents the first comprehensive integration of DNA methylation and transcriptional data in primary high-grade soft tissue sarcomas. We propose novel biomarkers and genes relevant for pathogenesis, including NNAT as a potential tumor suppressor in myxoid liposarcomas
Health related Quality of Life over time in German sarcoma patients. An analysis of associated factors - results of the PROSa study
Introduction
Sarcomas are rare cancers and very heterogeneous in their location, histological subtype, and treatment. Health-Related Quality of Life (HRQoL) of sarcoma patients has rarely been investigated in longitudinal studies.
Methods
Here, we assessed adult sarcoma patients and survivors between September 2017 and February 2020, and followed-up for one year in 39 study centers in Germany. Follow-up time points were 6 (t1) and 12 months (t2) after inclusion. We used a standardized, validated questionnaire (the European Organisation for Research and Treatment of Cancer Quality of Life Core Instrument (EORTC QLQ-C30) and explored predictors of HRQoL in two populations (all patients (Analysis 1), patients in ongoing complete remission (Analysis 2)) using generalized linear mixed models.
Results
In total we included up to 1111 patients at baseline (915 at t1, and 847 at t2), thereof 387 participants were in complete remission at baseline (334 at t1, and 200 at t2). When analyzing all patients, HRQoL differed with regard to tumor locations: patients with sarcoma in lower extremities reported lower HRQoL values than patients with sarcomas in the upper extremities. Treatment which included radiotherapy and/or systemic therapy was associated with lower HRQoL. For patients in complete remission, smoking was associated with worse HRQoL-outcomes. In both analyses, bone sarcomas were associated with the worst HRQoL values. Being female, in the age group 55-<65 years, having lower socioeconomic status, and comorbidities were all associated with a lower HRQoL, in both analyses.
Discussion
HRQoL increased partially over time since treatment and with sporting activities. HRQoL improved with time since treatment, although not in all domains, and was associated with lifestyle and socioeconomic factors. Bone sarcomas were the most affected subgroup. Methods to preserve and improve HRQoL should be developed for sarcoma patients.
</sec
Sarcoma classification by DNA methylation profiling
Sarcomas are malignant soft tissue and bone tumours affecting adults, adolescents and children. They represent a morphologically heterogeneous class of tumours and some entities lack defining histopathological features. Therefore, the diagnosis of sarcomas is burdened with a high inter-observer variability and misclassification rate. Here, we demonstrate classification of soft tissue and bone tumours using a machine learning classifier algorithm based on array-generated DNA methylation data. This sarcoma classifier is trained using a dataset of 1077 methylation profiles from comprehensively pre-characterized cases comprising 62 tumour methylation classes constituting a broad range of soft tissue and bone sarcoma subtypes across the entire age spectrum. The performance is validated in a cohort of 428 sarcomatous tumours, of which 322 cases were classified by the sarcoma classifier. Our results demonstrate the potential of the DNA methylation-based sarcoma classification for research and future diagnostic applications
SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia.
The nucleoside analog cytarabine (Ara-C) is an essential component of primary and salvage chemotherapy regimens for acute myeloid leukemia (AML). After cellular uptake, Ara-C is converted into its therapeutically active triphosphate metabolite, Ara-CTP, which exerts antileukemic effects, primarily by inhibiting DNA synthesis in proliferating cells. Currently, a substantial fraction of patients with AML fail to respond effectively to Ara-C therapy, and reliable biomarkers for predicting the therapeutic response to Ara-C are lacking. SAMHD1 is a deoxynucleoside triphosphate (dNTP) triphosphohydrolase that cleaves physiological dNTPs into deoxyribonucleosides and inorganic triphosphate. Although it has been postulated that SAMHD1 sensitizes cancer cells to nucleoside-analog derivatives through the depletion of competing dNTPs, we show here that SAMHD1 reduces Ara-C cytotoxicity in AML cells. Mechanistically, dGTP-activated SAMHD1 hydrolyzes Ara-CTP, which results in a drastic reduction of Ara-CTP in leukemic cells. Loss of SAMHD1 activity-through genetic depletion, mutational inactivation of its triphosphohydrolase activity or proteasomal degradation using specialized, virus-like particles-potentiates the cytotoxicity of Ara-C in AML cells. In mouse models of retroviral AML transplantation, as well as in retrospective analyses of adult patients with AML, the response to Ara-C-containing therapy was inversely correlated with SAMHD1 expression. These results identify SAMHD1 as a potential biomarker for the stratification of patients with AML who might best respond to Ara-C-based therapy and as a target for treating Ara-C-refractory AML
- …