818 research outputs found

    The response of northern red oak to environmental change in the St. Clair River delta.

    Get PDF

    INTEGRAL timing and localization performance

    Full text link
    In this letter we report on the accuracy of the attitude, misalignment, orbit and time correlation which are used to perform scientific analyses of the INTEGRAL data. The boresight attitude during science pointings has an accuracy of 3 arcsec. At the center of the field, the misalignments have been calibrated leading to a location accuracy of 4 to 40 arcsec for the different instruments. The spacecraft position is known within 10 meters. The relative timing between instruments could be reconstructed within 10 microsec and the absolute timing within 40 microsec.Comment: 5 pages, 2 figures, accepted for publication in A+A letters, INTEGRAL special issu

    Hard X-ray flares in IGR J08408-4503 unveil clumpy stellar winds

    Full text link
    Context : A 1000-s flare from a new hard X-ray transient, IGR J08408-4503, was observed by INTEGRAL on May 15, 2006 during the real-time routine monitoring of IBIS/ISGRI images performed at the INTEGRAL Science Data Centre. The flare, detected during a single one-hour long pointing, peaked at 250 mCrab in the 20-40 keV energy range. Aims : Multi-wavelength observations, combining high-energy and optical data, were used to unveil the nature of IGR J08408-4503. Methods : A search in all INTEGRAL public data for other bursts from IGR J08408-4503 was performed, and the detailed analysis of another major flare is presented. The results of two Swift Target of Opportunity observations are also described. Finally, a study of the likely optical counterpart, HD 74194, is provided. Results : IGR J08408-4503 is very likely a supergiant fast X-ray transient (SFXT) system. The system parameters indicate that the X-ray flares are probably related to the accretion of wind clumps on a compact object orbiting about 1E13 cm from the supergiant HD 74194. The clump mass loss rate is of the order of 1E-6 solar mass/yr. Conclusions : Hard X-ray flares from SFXTs allow to probe the stellar winds of massive stars, and could possibly be associated with wind perturbations due to line-driven instabilities.Comment: 5 pages with 5 figures. Published as a Letter in Astronomy & Astrophysic

    Simultaneous X-ray, radio, near-infrared, and optical monitoring of Young Stellar Objects in the Coronet cluster

    Full text link
    Multi-wavelength (X-ray to radio) monitoring of Young Stellar Objects (YSOs) can provide important information about physical processes at the stellar surface, in the stellar corona, and/or in the inner circumstellar disk regions. While coronal processes should mainly cause variations in the X-ray and radio bands, accretion processes may be traced by time-correlated variability in the X-ray and optical/infrared bands. Several multi-wavelength studies have been successfully performed for field stars and approx. 1-10 Myr old T Tauri stars, but so far no such study succeeded in detecting simultaneous X-ray to radio variability in extremely young objects like class I and class 0 protostars. Here we present the first simultaneous X-ray, radio, near-infrared, and optical monitoring of YSOs, targeting the Coronet cluster in the Corona Australis star-forming region, which harbors at least one class 0 protostar, several class I objects, numerous T Tauri stars, and a few Herbig AeBe stars. [...] Seven objects are detected simultaneously in the X-ray, radio, and optical/infrared bands; they constitute our core sample. While most of these sources exhibit clear variability in the X-ray regime and several also display optical/infrared variability, none of them shows significant radio variability on the timescales probed. We also do not find any case of clearly time-correlated optical/infrared and X-ray variability. [...] The absence of time-correlated multi-wavelength variability suggests that there is no direct link between the X-ray and optical/infrared emission and supports the notion that accretion is not an important source for the X-ray emission of these YSOs. No significant radio variability was found on timescales of days.Comment: 11 pages, 11 figures, accepted for publication in A&A (06 Dec 2006

    Basic fibroblast growth factor (bFGF) in rodent testis

    Get PDF
    We have previously described a 30 kDa basic fibroblast growth factor (bFGF)-like protein in rodent testicular homogenates and have shown that pachytene spermatocytes are the sites of predominant immunoreactivity for this bFGF-like protein (Mayerhofer, A., Russell, L.D., Grothe, C., Rudolf, M. and Gratzl, M. (1991) Endocrinology 129, 921–924). We have now addressed the question whether this 30 kDa bFGF-like protein is a large bFGF form and whether it is produced by pachytene spermatocytes. We detected bFGF mRNA in homogenates of isolated mouse spermatocytes (which consisted mainly of pachytene spermatocytes) using S1 nuclease protection assays. As shown by Western blot analyses, the bFGF mRNA in mouse spermatocytes is translated into bFGF of an approximate molecular weight of 30 kDa. Neither bFGF mRNA, nor bFGF itself, was observed in isolated mouse Leydig cells. These results indicate that the immunoreactive bFGF-like protein observed previously in germ cells of the murine testis is identical to bFGF. Thus, germ cells of the testis produce bFGF, which may exert regulatory function in the process of spermatogenesis

    A multi-wavelength study of the young star V1118 Orionis in outburst

    Full text link
    Abriged version for astroph: The young late-type star V1118 Orionis was in outburst from 2005 to 2006. We followed the outburst with optical and near-infrared photometry; the X-ray emission was further probed with observations taken with XMM-Newton and Chandra during and after the outburst. In addition, we obtained mid-infrared photometry and spectroscopy with Spitzer at the peak of the outburst and in the post-outburst phase. The spectral energy distribution of V1118 Ori varied significantly over the course of the outburst. The optical flux showed the largest variations, most likely due to enhanced emission by a hot spot. The latter dominated the optical and near-infrared emission at the peak of the outburst, while the disk emission dominated in the mid-infrared. The X-ray flux correlated with the optical and infrared fluxes, indicating that accretion affected the magnetically active corona and the stellar magnetosphere. The thermal structure of the corona was variable with some indication of a cooling of the coronal temperature in the early phase of the outburst with a gradual return to normal values. Color-color diagrams in the optical and infrared showed variations during the outburst, with no obvious signature of reddening due to circumstellar matter. Using MC realizations of star+disk+hotspot models to fit the SED in ``quiescence'' and at the peak of the outburst, we determined that the mass accretion rate varied from about 2.5E-7 Msun/yr to 1E-6 Msun/yr; in addition the fractional area of the hotspot increased significantly as well. The multi-wavelength study of the V1118 Ori outburst helped us to understand the variations in spectral energy distributions and demonstrated the interplay between the disk and the stellar magnetosphere in a young, strongly accreting star.Comment: Accepted in A&A, Tables will be published onlin

    SPI/INTEGRAL observation of the Cygnus region

    Full text link
    We present the analysis of the first observations of the Cygnus region by the SPI spectrometer onboard the Integral Gamma Ray Observatory, encompassing ∌{\sim} 600 ks of data. Three sources namely Cyg X-1, Cyg X-3 and EXO 2030+375 were clearly detected. Our data illustrate the temporal variability of Cyg X-1 in the energy range from 20 keV to 300 keV. The spectral analysis shows a remarkable stability of the Cyg X-1 spectra when averaged over one day timescale. The other goal of these observations is SPI inflight calibration and performance verification. The latest objective has been achieved as demonstrated by the results presented in this paper.Comment: 6 pages, 10 figures, accepted for publication in A&A (special INTEGRAL volume

    Radio and X-ray variability of Young Stellar Objects in the Coronet Cluster

    Full text link
    The Coronet Cluster in the nearby R CrA dark cloud offers the rare opportunity to study at least four "class I" protostellar sources as well as one candidate "class 0" source, a Herbig Ae star, and a candidate brown dwarf within a few square arcminutes - most of them detected at radio- and X-ray wavelengths. These sources were observed with the Very Large Array (VLA) at 3.5cm on nine occasions in 1998, spread over nearly four months. The source IRS 5, earlier shown to emit circularly polarized radio emission, was observed to undergo a flux increase accompanied by changes in its polarization properties. Comparison with VLA measurements taken in January 1997 allows for some analysis of longer-term variability. In addition to this radio monitoring, we analyze archival Chandra and XMM-Newton X-ray data of these sources. Three class I protostars are bright enough for X-ray spectroscopy, and we perform a variability analysis for these sources, covering a total of 154 ksec spread over more than two and a half years. Also in X-rays, IRS 5 shows the most pronounced variability, whilst the other two class I protostars IRS 1 and IRS 2 have more stable emission. X-ray data is also analyzed for the recently identified candidate class 0 source IRS 7E, which shows strong variability as well as for the Herbig Ae star R CrA for which we find extremely hot X-ray-emitting plasma. For IRS 1,2 and 5, the hydrogen column densities derived from the X-ray spectra are at about half the values derived with near-infrared techniques, a situation similar to what has been observed towards some other young stellar objects.Comment: 17 pages, 11 figures, accepted for publication in A&

    Chandra Observations of the Faintest Low-Mass X-ray Binaries

    Get PDF
    There exists a group of persistently faint galactic X-ray sources that, based on their location in the galaxy, high L_x/L_opt, association with X-ray bursts, and absence of low frequency X-ray pulsations, are thought to be low-mass X-ray binaries (LMXBs). We present results from Chandra observations for eight of these systems: 4U 1708-408, 2S 1711-339, KS 1739-304, SLX 1735-269, GRS 1736-297, SLX 1746-331, 1E 1746.7-3224, and 4U 1812-12. Locations for all sources, excluding GRS 1736-297, SLX 1746-331, and KS 1739-304 (which were not detected) were improved to 0.6" error circles (90% confidence). Our observations support earlier findings of transient behavior of GRS 1736-297, KS 1739-304, SLX 1746-331, and 2S 1711-339 (which we detect in one of two observations). Energy spectra for 4U 1708-408, 2S 1711-339, SLX 1735-269, 1E 1746.7-3224, and 4U 1812-12 are hard, with power law indices typically 1.4-2.1, which are consistent with typical faint LMXB spectra.Comment: 15 pages, 3 figures. Accepted by Ap
    • 

    corecore