87 research outputs found

    Maintenance of Large Subpopulations of Differentiated CD8 T-Cells Two Years after Cytomegalovirus Infection in Gambian Infants

    Get PDF
    BACKGROUND: In a previously published study, we found that large differentiated subpopulations of CD8 T-cells emerged rapidly after CMV infection in young infants and persisted throughout the following year. Here we describe a follow-up study conducted on the same infants to establish whether the differentiated subpopulations continued through the second year post-infection. METHODOLOGY / PRINCIPAL FINDINGS: CMV-specific cells identified using tetramers remained more activated and differentiated than the overall CD8 population. The large subpopulation of differentiated cytotoxic (CD28(-)CD62L(-)Bcl-2(low)CD95(+)perforin(+)) cells that emerged rapidly after infection remained stable after two years. No similar subpopulation was found in CMV-uninfected infants indicating that two years after infection, CMV remained a major factor in driving CD8 T-cell differentiation. Although markers of activation (CD45R0 and HLA-D) declined throughout the first year, HLA-D expression continued to decline during the second year and CD45R0 expression increased slightly. The age-related increase in IFNgamma response observed during the first year continued but was non-significant during the second year, indicating that the rate of functional improvement had slowed substantially. CONCLUSIONS / SIGNIFICANCE: The large differentiated subpopulations of CD8 T-cells that had emerged immediately after CMV infection persisted through the second year post-infection, while levels of activation and functional capacity remained fairly constant.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Endothelial Progenitor Cell Number and Colony-forming Capacity in Overweight and Obese Adults

    Get PDF
    OBJECTIVE: To investigate whether adiposity influences endothelial progenitor cell (EPC) number and colony-forming capacity.DESIGN: Cross-sectional study of normal weight, overweight and obese adult humans.PARTICIPANTS: Sixty-seven sedentary adults (aged 45-65 years): 25 normal weight (body mass index (BMI) or=30 kg/m(2); 18 males/6 females). All participants were non-smokers and free of overt cardiometabolic disease.MEASUREMENTS: Peripheral blood samples were collected and circulating EPC number was assessed by flow cytometry. Putative EPCs were defined as CD45(-)/CD34(+)/VEGFR-2(+)/CD133(+) or CD45(-)/CD34(+) cells. EPC colony-forming capacity was measured in vitro using a colony-forming unit (CFU) assay.RESULTS: Number of circulating putative EPCs (either CD45(-)/CD34(+)/VEGFR-2(+)/CD133(+) or CD45(-)/CD34(+) cells) was lower (P\u3c0.05) in obese (0.0007±0.0001%; 0.050±0.006%) compared with overweight (0.0016±0.0004%; 0.089±0.019%) and normal weight (0.0015±0.0003%; 0.082±0.008%) adults. There were no differences in EPC number between the overweight and normal weight groups. EPC colony-formation was significantly less in the obese (6±1) and overweight (4±1) compared with normal weight (9±2) adults.CONCLUSION: These results indicate that: (1) the number of circulating EPCs is lower in obese compared with overweight and normal weight adults; and (2) EPC colony-forming capacity is blunted in overweight and obese adults compared with normal weight adults. Impairments in EPC number and function may contribute to adiposity-related cardiovascular risk

    A genome-wide association study of aging

    Get PDF
    AbstractHuman longevity and healthy aging show moderate heritability (20%–50%). We conducted a meta-analysis of genome-wide association studies from 9 studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for 2 outcomes: (1) all-cause mortality, and (2) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10−8). We found 14 independent SNPs that predicted risk of death, and 8 SNPs that predicted event-free survival (p < 10−5). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer's disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity

    A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins

    Get PDF
    Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin similar to 100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants

    Association of heat shock proteins with all-cause mortality

    Get PDF
    Experimental mild heat shock is widely known as an intervention that results in extended longevity in various models along the evolutionary lineage. Heat shock proteins (HSPs) are highly upregulated immediately after a heat shock. The elevation in HSP levels was shown to inhibit stress-mediated cell death, and recent experiments indicate a highly versatile role for these proteins as inhibitors of programmed cell death. In this study, we examined common genetic variations in 31 genes encoding all members of the HSP70, small HSP, and heat shock factor (HSF) families for their association with all-cause mortality. Our discovery cohort was the Rotterdam study (RS1) containing 5,974 participants aged 55years and older (3,174 deaths). We assessed 4,430 single nucleotide polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. After adjusting for multiple testing by permutation analysis, three SNPs showed evidence for association with all-cause mortality in RS1. These findings were followed in eight independent population-based cohorts, leading to a total of 25,007 participants (8,444 deaths). In the replication phase, only HSF2 (rs1416733) remained significantly associated with all-cause mortality. Rs1416733 is a known cis-eQTL for HSF2. Our findings suggest a role of HSF2 in all-cause mortality.Electronic supplementary materialThe online version of this article (doi:10.1007/s11357-012-9417-7) contains supplementary material, which is available to authorized users

    A genome-wide association study of aging

    Get PDF
    Human longevity and healthy aging show moderate heritability (20–50%). We conducted a meta-analysis of genome-wide association studies from nine studies from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium for two outcomes: a) all-cause mortality and b) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a genome-wide significant predictor of either outcome (p < 5 × 10−8). We found fourteen independent SNPs that predicted risk of death, and eight SNPs that predicted event-free survival (p < 10−5). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1, BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1, NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases including cancer and Alzheimer’s disease. In addition to considerable overlap between the traits, pathway and network analysis corroborated these findings. These findings indicate that variation in genes involved in neurological processes may be an important factor in regulating aging free of major disease and achieving longevity

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource study

    Get PDF
    The prevalence of hypertension in African Americans (AAs) is higher than in other US groups; yet, few have performed genome-wide association studies (GWASs) in AA. Among people of European descent, GWASs have identified genetic variants at 13 loci that are associated with blood pressure. It is unknown if these variants confer susceptibility in people of African ancestry. Here, we examined genome-wide and candidate gene associations with systolic blood pressure (SBP) and diastolic blood pressure (DBP) using the Candidate Gene Association Resource (CARe) consortium consisting of 8591 AAs. Genotypes included genome-wide single-nucleotide polymorphism (SNP) data utilizing the Affymetrix 6.0 array with imputation to 2.5 million HapMap SNPs and candidate gene SNP data utilizing a 50K cardiovascular gene-centric array (ITMAT-Broad-CARe [IBC] array). For Affymetrix data, the strongest signal for DBP was rs10474346 (P= 3.6 × 10−8) located near GPR98 and ARRDC3. For SBP, the strongest signal was rs2258119 in C21orf91 (P= 4.7 × 10−8). The top IBC association for SBP was rs2012318 (P= 6.4 × 10−6) near SLC25A42 and for DBP was rs2523586 (P= 1.3 × 10−6) near HLA-B. None of the top variants replicated in additional AA (n = 11 882) or European-American (n = 69 899) cohorts. We replicated previously reported European-American blood pressure SNPs in our AA samples (SH2B3, P= 0.009; TBX3-TBX5, P= 0.03; and CSK-ULK3, P= 0.0004). These genetic loci represent the best evidence of genetic influences on SBP and DBP in AAs to date. More broadly, this work supports that notion that blood pressure among AAs is a trait with genetic underpinnings but also with significant complexit
    corecore