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Abstract
Human longevity and healthy aging show moderate heritability (20–50%). We conducted a meta-
analysis of genome-wide association studies from nine studies from the Cohorts for Heart and
Aging Research in Genomic Epidemiology Consortium for two outcomes: a) all-cause mortality
and b) survival free of major disease or death. No single nucleotide polymorphism (SNP) was a
genome-wide significant predictor of either outcome (p < 5 × 10−8). We found fourteen
independent SNPs that predicted risk of death, and eight SNPs that predicted event-free survival (p
< 10−5). These SNPs are in or near genes that are highly expressed in the brain (HECW2, HIP1,
BIN2, GRIA1), genes involved in neural development and function (KCNQ4, LMO4, GRIA1,
NETO1) and autophagy (ATG4C), and genes that are associated with risk of various diseases
including cancer and Alzheimer’s disease. In addition to considerable overlap between the traits,
pathway and network analysis corroborated these findings. These findings indicate that variation
in genes involved in neurological processes may be an important factor in regulating aging free of
major disease and achieving longevity.

Introduction
The recent, remarkable extension of life expectancy is largely attributed to the postponement
of mortality at old age (Vaupel, 1997, Vaupel, 2010). The years of life gained in the older
population residing in developed nations are a success story of public health measures and
improved health care. In addition to such external factors, longevity and healthy aging
consistently show a modest heritability between 20 to 50% and aging associated genetic
research may provide further insights into the mechanisms of aging (Herskind, et al., 1996,
McGue, et al., 1993, Reed and Dick, 2003). It has been postulated that genes involved in
pathways associated with aging identified in animal models, such as IGF-insulin signalling,

Walter et al. Page 2

Neurobiol Aging. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



regulation of lipoprotein metabolism, the mTOR pathway, and the oxidative stress response
may also influence survival to old or even exceptionally old age in humans (Christensen, et
al., 2006, Kenyon, 2010, Vellai, et al., 2003). However, in humans, common variants within
genes involved in these pathways have not been consistently associated with lifespan
(Christensen, et al., 2006, Kenyon, 2010, Kuningas, et al., 2008, Vijg and Suh, 2005).

The lack of success in the identification of genes related to aging in humans may be due to
the complexity of the phenotype. One approach to investigate aging and longevity is to
compare frequencies of genetic variants between nonagenarians or centenarians and the
general population. This approach led to the discovery of an association between APOE
(Deelen, et al., 2011, Ewbank, 2007, Gerdes, et al., 2000) and more recently FOXO3A
(Anselmi, et al., 2009, Flachsbart, et al., 2009, Li, et al., 2009a, Pawlikowska, et al., 2009,
Willcox, et al., 2008) and human aging and longevity. However, a recent GWAS of
individuals reaching the age of 90 or older failed to identify genome-wide significant
variants (Newman, et al., 2010).

Prospective follow-up studies with a continuous outcome such as time to death are more
powerful than case-control analyses. A study of time to death simultaneously addresses the
effects of genetic variation related to life span, the progression towards death, and disease
specific mortality. This design has been successfully applied in animal models (Finch and
Ruvkun, 2001, Kenyon, 2010) and also in human genetics research of blood pressure (Levy,
et al., 2009, Newton-Cheh, et al., 2009, van Rijn, et al., 2007), a trait with heritability similar
to longevity, where examination of a continuous outcome has been more successful in
identifying genetic loci than studies that have solely used hypertension as a dichotomous
trait. Frailty and survival free of disease have been suggested as more promising phenotypes
for studies of aging since mortality is a very heterogeneous outcome caused by multiple
chronic conditions (Vijg and Suh, 2005).

This study addresses the genetics of aging in a broad, sequential way using data from cohort
studies participating in the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium. First, we aimed to identify SNPs associated with all cause mortality
(time to death) in a hypothesis-free GWAS in ~ 25,000 unselected persons of European
ancestry. Second, we performed GWAS of time to event, defined by major incident events
(myocardial infarction, heart failure, stroke, dementia, hip fracture or cancer) or death, as an
alternative phenotype for healthy aging. Last, we analyzed the SNPs along with their
respective most likely associated genes identified in the GWAS meta-analyses to identify
pathways and networks associated with aging and longevity.

Methods
Participants

The participants are of recent European ancestry and stem from cohorts of the CHARGE
Consortium (Psaty, et al., 2009). All cohorts are follow-up studies periodically assessing the
health and vital status of their participants. Although some of the cohorts included multiple
ethnic groups, only data from self-reported Caucasians was used. In addition, population
structure was assessed using principal components in each CHARGE study and outliers
were removed. Any remaining within-study structure was adjusted for using appropriate
methods.(Price, et al., 2006) All participants included in this analysis were at least 55 years
of age at the time of blood draw for DNA and provided written informed consent. A brief
description of each population is given in the Supplementary Information.

Phenotype—We conducted a survival analysis, adjusted for age at baseline and sex, to
model continuous time to death or end of follow-up in 25,007 participants (deceased
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(“cases”) = 8,444, mean follow-up time = 10.6 (SD 5.4) years) that were older than 55 years
at baseline. As research demonstrated that the likelihood of incident disease is genetically
determined, we defined a second phenotype: survival free of major disease or mortality
(Atzmon, et al., 2004, Lunetta, et al., 2007, Vijg and Suh, 2005). The outcome was defined
as time to the first of the following adjudicated events: myocardial infarction, heart failure,
stroke, dementia, hip fracture, cancer, or death. For this analysis, participants at baseline
were older than 55 years of age and free of any of the aforementioned conditions. Inclusion
in the study required complete follow-up information on mortality and at least 4 out of 6 of
the health conditions. Genome-wide information on polymorphisms was available for
16,995 participants free of disease at the beginning of the study. These participants were
followed for 8.8 (SD 5.7) years and we registered 7,314 major events.

Genotyping and Imputation—As different genotyping platforms were used across
studies, we imputed to 2.5 million SNPs using the HapMap 22 CEU (build 36) genotyped
samples as a reference. For details on the study specific quality control procedures for
genotyping and imputation please consult Table S1 in the Supplementary Information (SI).

Statistical Analysis—We used the semi-parametric Cox proportional hazard to model
time to event for both phenotypes in each study. Follow-up time since baseline was used as
time scale. An additive genetic model was used in this analysis. We subsequently combined
the individual study results in a meta-analysis using a fixed effects model that combined the
study specific regression parameters and standard errors using inverse variance weighting.
We included SNPs that had a minor allele frequency (MAF) of at least 1% and an
imputation quality ratio (de Bakker, et al., 2008) (equivalent to the MaCH r2 statistic (Li, et
al., 2009b)) of at least 0.3. The study specific inflation factors (λGC) were computed using
the set of chi-square statistics used for the meta-analysis for each study. The inflation factor
is computed as the median of all chi-square statistics divided by the expected median of the
statistics (approximately 0.456) for a chi-square distribution with 1 degree of freedom. SNP
associations at p<5 × 10−8 were considered to be genome-wide significant. SNPs with p<5 ×
10−5 were considered suggestive associations. The combined meta-analysis hazard ratio
(HR) can be interpreted as the increase in the risk of dying or having a major event during
follow-up per additional copy of the coded allele. Power analysis revealed 80% statistical
power to detect SNPs with a minor allele frequency of 5% and relative risk of 1.10 using a
nominal significance level of 0.05 (Supplementary Table 2).

In addition, we incorporated gene annotation information, a technique that has successfully
been applied in the field of aging research (de Magalhaes, et al., 2009a, de Magalhaes, et al.,
2009b). Protein ANalysis THrough Evolutionary Relationships (PANTHER)(Mi, et al.,
2007, Thomas, et al., 2003) and Ingenuity Pathway Analysis (IPA) (www.ingenuity.com)
were used for identification and classification of networks, pathways, biological processes
and molecular functions of the genes identified in this study. For both phenotypes we
generated lists of candidate genes. These genes were the closest reference genes to the SNPs
associated with the outcome at p < 1 × 10−3. PANTHER compares these gene lists to the
reference list using the binomial test for each molecular function, biological process, or
pathway term. IPA builds networks by searching the Ingenuity Pathways Knowledge Base
for interactions between the identified genes and all other gene objects stored in the
knowledge base.

Results
We conducted a meta-analysis of GWAS on time to death adjusted for baseline age and sex
in participants of European origin, 55 years of age or older from nine longitudinal cohort
studies participating in the CHARGE Consortium (Psaty, et al., 2009). In total, we observed
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8,444 deaths (mean age at death: 81.1, Standard Deviation (SD) 8.4)) in 25,007 participants
(55% female) after an average follow up of 10.6 (SD 5.4) years. Descriptive characteristics
of participants and Manhattan plots showing genome wide p-values for association are
displayed in the Supplementary Information, (Figure S1, Tables S3–4). The quantile-
quantile plot (Q-Q plot) of observed versus expected p-values showed only a small deviation
from the null hypothesis, indicating no significant population stratification (Figure 1a, λGC =
1.066). Although there were no genome-wide significant findings (p < 5 × 10−8), 14
independent SNPs were associated with time to death at a suggestive threshold of p < 1 ×
10−5 (Table 1). Among these SNPs, rs4936894 (chromosome 11, near the von Willebrand
factor A domain containing 5A gene (VWA5A)) had the strongest association with time to
death (p = 3.4 × 10−7). We sought replication for 5 of the 14 top SNPs with the strongest
association with time to death in 4 independent samples (n=10,411, deaths= 1,295) of the
same ancestry. None of the SNPs were consistently associated with time to death at a
nominally significant level of p < 0.05 across all replication samples (Table S5–S8). In the
combined meta-analysis of the discovery and replication studies only rs1425609 in the
vicinity of otolin-1 (OTOL1) showed a stronger association (1.61 × 10−6).

Likewise, no genome-wide significant findings were identified in the time to event analysis
following 16,995 participants free of disease at baseline and registering 7,314 events over an
average of 8.8 (SD 5.7) years of follow-up (Table 2). Events included incident myocardial
infarction, heart failure, stroke, dementia, hip fracture, and cancer or death. The Q-Q plot
(Figure 1b, λGC = 1.019) showed no evidence of inflation of type I error. In total, there were
8 independent SNPs associated with event-free survival at p < 10−5. The SNP with the
strongest association was rs10412199 (chromosome 19, p = 3.02 × 10−6), which is in close
proximity to ataxia, cerebellar, Cayman type (ATCAY). Additional descriptive information
including definitions of each event and association results with p < 10−4 are provided in the
Figure S2, Tables S9–S12.

As both phenotypes may provide different but complimentary information about the aging
process, we evaluated the overlap between their association results (Table 3). Interpretation
of the overlap between the phenotypes requires caution as both phenotypes are correlated,
nevertheless it helps to focus on specific loci and put them into the context of aging. From
the 14 loci passing the pre-specified, suggestive threshold of p < 1 × 10−5 in the time to
death analysis, 5 had corresponding SNPs within 500 kb distance, in linkage disequilibrium
(LD, r2 > 0.1) associated with p < 1 × 10−4 and the same overall direction of the effect in the
time to event analysis. These 5 regions were in the vicinity of the following genes: OTOL1
(3q26.1), bridging integrator 2 (BIN2, 12q13), ATG4 autophagy related 4 homolog C
(ATG4C, 1p31.3), origin recognition complex, subunit 5-like (ORC5L, 7q22.1), and
potassium voltage-gated channel, KQT-like subfamily, member 4 (KCNQ4, 1p34).
Similarly, in the time to event analysis three of the eight top SNPs showed considerable
overlap and the same direction of effect in the time to death analysis. These SNPs were close
to the following genes: MDS1 and EVI1 complex locus (MECOM, 3q24–q28), succinate-
CoA ligase, ADP-forming, beta subunit (SUCLA2, 13q12.2–q13.3), and ST3 beta-
galactoside alpha-2,3-sialyltransferase 3 (ST3GAL3, 1p34.1).

Finally, we evaluated candidate genes for aging by identification and classification of
networks, pathways, biological processes and molecular functions. The candidate genes
were derived from the meta-analyses of GWAS and included the reference genes closest to
the SNPs associated with p < 1 × 10−3 (time to death: 862 genes, time to event: 704 genes).
We used PANTHER (Mi, et al., 2007, Thomas, et al., 2003, Thomas, et al., 2006) and
Ingenuity Pathway Analysis (IPA) software (www.ingenuity.com) for these analyses.
PANTHER compares these gene lists to the reference list using the binomial test for each
molecular function, biological process, or pathway term. IPA builds networks by searching
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the Ingenuity Pathways Knowledge Base for interactions between the identified genes and
all other gene objects stored in the knowledge base.

For the analysis of time to death, the relevant biological processes overrepresented in the
PANTHER analysis were developmental processes, neuronal activities, signal transduction,
neurogenesis, ectoderm development, and cell adhesion. For the analysis of time to incident
event, developmental processes and neuronal activities were overrepresented among other
biological process (Table 4). The analyses also highlighted the Wnt signalling pathway. The
Wnt signalling pathway is ubiquitous and know to be involved in cancer but also plays an
important role in the early stages of the development of the central nervous system, in
synaptic formation by axon guidance, and in modulating fibrosis during muscle repair
scored high in both traits under study (Brack, et al., 2007, Inestrosa and Arenas, 2010,
Keeble, et al., 2006, Ulloa and Marti, 2010). For extended tables see Supplementary
Information Table S13 and Table S14. In addition, Ingenuity identified one network with p
= 10−31 containing 26 genes involved in processes related to nervous system development
and function for the analysis of time to death (Figure 2) and one network with p = 10−40

containing 28 genes involved in cellular function and development for time to event
(Supplementary Information, Figure S3).

IPA analysis highlighted the following genes associated with the time to death trait: NTRK2
(neurotrophic tyrosine kinase, receptor, type 2), - a member of the neurotrophic tyrosine
receptor kinase family. This kinase is a membrane-bound receptor that, upon neurotrophin
binding, phosphorylates itself and members of the MAPK pathway. Signaling through this
kinase leads to cell differentiation. Second in line were NCAM1 (neural cell adhesion
molecule 1), - a cytoskeletal binding protein, GRID2 (glutamate receptor, ionotropic, delta
2), - a relatively new member of the family of ionotropic glutamate receptors which are the
predominant excitatory neurotransmitter receptors in the mammalian brain, and have a role
in neuronal apoptotic death, and RIMS1 (regulating synaptic membrane exocytosis 1), which
regulates synaptic vesicle exocytosis and may be part of the protein scaffold of the cell.

Among the genes that were highlighted through the IPA analysis in the analysis of time to
event was MYC (v-myc myelocytomatosis viral oncogene homolog), - a multifunctional,
nuclear phosphoprotein that plays a role in cell cycle progression, apoptosis and cellular
transformation. MYC functions as a transcription factor that regulates transcription of
specific target genes. Second in line were E2F1 (E2F transcription factor 1), EGFR
(epidermal growth factor receptor), and CEBPA (CCAAT/enhancer binding protein (C/
EBP), alpha). EF21, a transcription factor, plays a crucial role in the control of cell cycle
and action of tumor suppressor proteins, can mediate both cell proliferation and p53-
dependent/independent apoptosis. EGFR is a transmembrane glycoprotein that serves as a
receptor for members of the epidermal growth factor family and supports cell proliferation.
CEBP-Alpha, a bZIP transcription factor, can bind as a homodimer to certain promoters and
enhancers. CEBPA also forms heterodimers with the related proteins CEBP-beta and CEBP-
gamma and modulates the expression of leptin, interacts with CDK2 and CDK4, and thereby
inhibits these kinases and causes growth arrest in cultured cells.

Discussion
In our analyses of over 25,000 individuals of 55 years and older followed for an average of
11 years, we did not identify genome-wide significant associations for all-cause mortality
and survival free of major diseases. However, both traits highlighted loci with suggestive
significance that were in the neighbourhood of genes related to neural regulation. In
addition, our pathway and network analyses identified an enrichment of genes associated
with cellular and neural development and function, and cell communication that may
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contribute to variation in human aging. Brain development might be responsible for the
creation of redundancy in brain circuitry, which is associated with functional reserve and
resiliency. Brain function regulates most of the compensatory strategy supporting
maintenance of homeostatic equilibrium. Both of these processes are essential to healthy
aging and longevity.

Several explanations are possible for the lack of genome-wide significant findings. First,
mortality is arguably one of the most complex phenotypes, and several trajectories towards
extreme old age have been identified (Evert, et al., 2003). Multiple genes could mediate the
aging process but would have their effects through numerous different pathophysiological
processes and diseases that act as intermediate factors on the pathway to death (de
Magalhaes, et al., 2009b). Therefore, any common variation in genes associated with aging
probably has a small effect.

Second, the largely negative findings of this and other studies contrast with the intriguing
animal studies of longevity. Very large effects of single genes on lifespan have indeed been
observed in laboratory animals, but humans often have several homologues of these genes
which might significantly differ in function or compensate for mutated genes through
redundant mechanisms (Kuningas, et al., 2008). This could explain why our top findings did
not include genes in these pathways found in animal models. Animal models also represent
genetically homogenous populations and are exposed to controlled environmental
influences. The lack of replication of animal model findings in humans suggests that the use
of knock out animals may not provide the optimal approach to understanding the variation in
survival in humans as interactions with environmental factors may obscure the associations
and prevent the identification of loci in humans.

Third, our study is based on common genetic variants and therefore we cannot exclude
effects due to low frequency and rare variants (< 5%) or due to the presence of structural
variation, such as copy number polymorphisms. Our discovery set may lack the power to
identify all the relevant loci, even though we had sufficient power to detect common SNPs
(MAF = 5% or more) with a relative risk of 1.10 (SI, Table S2).

Last, we cannot exclude that phenotypic heterogeneity influenced our findings. While all
cohorts had prospectively-collected information on major health events and diagnoses,
heterogeneity in the methods of assessment and classification might have limited the ability
to identify true effects.

Complex diseases may result from the effects of a large number of low frequency variants,
with substantial allelic heterogeneity at disease-causing loci (Pritchard, 2001, Pritchard and
Cox, 2002, Swarbrick and Vaisse, 2003). Theoretical modelling that incorporates mutation,
random genetic drift, and purifying selection suggests that many of the variants that affect
complex traits may be in the 1–5% frequency range (Pritchard, 2001). Indeed, sequencing of
candidate genes in an attempt to capture such low frequency variants, has led to the
identification of rare variants with modest effects on body mass index (Ahituv, et al., 2007,
Cone, 2000, Challis, et al., 2002), triglyceride levels (Romeo, et al., 2007), HDL- (Cohen, et
al., 2004, Romeo, et al., 2007) and LDL-cholesterol levels (Cohen, et al., 2005, Cohen, et
al., 2006, Kotowski, et al., 2006).

It is impossible to determine the functional variant of a gene by GWAS. Moreover, we
cannot conclude from the location of a SNP that this variation is involved in the expression
of the closest gene. However, our top results suggested a possible role of genes involved in
neurological processes in human longevity and aging. Ten of the 22 suggestive associations
identified in our analyses are in or near genes that are highly expressed in the brain
(HECW2(Rotin and Kumar, 2009), HIP1(Blanpied, et al., 2003), BIN2, GRIA1), were
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previously related to the regulation of neuronal excitability and plasticity (KCNQ4(Van
Eyken, et al., 2006), LMO4(Joshi, et al., 2009, Leuba, et al., 2004), GRIA1), and the
maintenance of neural circuitry and synaptic plasticity(NETO1), or are associated with
neurological diseases such as Alzheimer’s disease (LMO4(Leuba, et al., 2004), BIN2,
GRIA1, GRIN2B) and amyotrophic lateral sclerosis (GRIN2B). In addition, 6 of the 22 SNPs
were in close proximity to genes associated with other phenotypes of aging such as
autophagy (ATG4C(Kenyon, 2010)), cancer (ATG4C(Maiuri, et al., 2009), HIP1(Bradley, et
al., 2007), HECW2(Rotin and Kumar, 2009), VWA5A(Zhou, et al., 2009), MECOM), and
mitochondrial depletion syndrome (SUCLA2). Notably, BIN2, ATG4C, KCNQ4, MECOM
and SUCLA2 showed associations with both traits in our study.

Using the expression quantitative trait loci (eQTL) browser
(http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/) we detected eQTL associated with HIP1,
COL5A1, LOC340156, and SMARCA2 in time to death only.

Interestingly, SNPs known to be associated with longevity and disease in the neighbourhood
of APOE(Deelen, et al., 2011) or FOXO3A(Flachsbart, et al., 2009, Willcox, et al., 2008)
only reached nominal significance (results not shown). These genes were originally
identified in studies of centenarians; it is possible that our study of cohorts comprised of
individuals from the general populations did not have sufficient statistical power to identify
these genes with certainty.(Tan, et al., 2008)

While meta-analysis of GWAS has the power to detect small changes of allele frequencies
between groups with the analyzed trait, true association signals may not be revealed based
on a stringent genome-wide significance threshold. This situation, although limiting false
positive findings, performs poorly in identifying false negatives as they may fall below the
threshold. Network analyses using a less stringent significance threshold do not amend the
overall negative finding of this study. However, it is well-recognized that within the many
associations that failed to attain this level of significance lie true positive associations.
Network analyses can provide useful information exploring multiple gene effects and their
interactions.

In fact the interpretation of most GWAS results is difficult because individual results may
involve many seemingly unrelated genes. Since PANTHER and IPA are built on different
conceptual approaches, database sources and different pathway classifications, they can be
seen as complementary approaches. Our pathway and network analyses highlighted neuronal
activities and organism developmental processes as major biological processes involved
aging. In addition, it highlighted Wnt signalling and showed that those genes that were
involved in most pathways indeed had substantial effects within the analyzed trait.
NTRK2(Rico, et al., 2002), NCAM1(Rutishauser, et al., 1988), GRID2(Hirai, et al., 2003),
and RIMS1(Johnson, et al., 2003, Schoch, et al., 2002) are associated with neuronal
development and disease pathways that were highlighted in the analysis of time to death.
MYC(Cole, 1986, Goga, et al., 2007), E2F1(Nevins, 2001), EGFR(Wang, et al., 2004), and
CEBPA(Menard, et al., 2002, Wang, et al., 2001) are associated with “cancer”, “cell
function” and “development” pathways.

Few if any of the top hits from the GWAS were involved in common pathways of aging,
typically addressed in candidate gene studies. For example, there was no specific evidence
for genes involved in IGF-insulin signalling. However, this negative finding cannot be
interpreted as evidence against the importance of IGF-insulin signalling, as well as other
processes such as inflammation, oxidative stress, cellular damage and repair, growth
hormone, and cell proliferation in aging. Moreover, it is possible that polymorphisms in
related genes have an effect in the oldest old, who were represented by fewer numbers in our
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study population such that our study design would be underpowered to detect it. It is also
conceivable that the neurological pathways identified by our analysis interact with the
known candidate genes involved in aging (Bishop, et al., 2010, Finch and Ruvkun, 2001). It
is feasible that the traditional aging pathways are hierarchically controlled by neurons and
that the brain might be the location coordinating physiological changes (Bishop, et al., 2010,
Finch and Ruvkun, 2001). Because neurons are particularly susceptible to damage caused by
reactive oxygen species, limitations in cellular maintenance and repair might reinforce these
pathways and accelerate aging (Finch and Ruvkun, 2001). An increased ability of neuronal
cells to prevent or repair oxidative damage might result in beneficial hormonal signalling,
otherwise deregulated with age, thus delaying the onset of age-related disease and directly
regulating cognitive aging and life span (Bishop, et al., 2010, Cutler and Mattson, 2006, de
Magalhaes and Sandberg, 2005).

In conclusion, our analysis did provide suggestive evidence that aging is under neuronal
control. Unfortunately, we have no relevant tissue or expression experiment available to
further underscore or validate our findings. Future investigations of changes of gene
expression with age at cellular and population levels are warranted.
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Figure 1.
Figure 1a Quantile–quantile (Q-Q) plot after meta-analysis for time to death
Figure 1b Quantile–quantile (Q-Q) plot after meta-analysis for time to event
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Figure 2. Network describing neuronal activities related to time to death
Pathway analysis of genes (SNPs) associated with time to death. Genes are represented as
nodes; edges indicate known interactions (solid lines depict direct and hatched lines depict
indirect interaction). Human gene functions are color-coded as follows: Red= Unknown,
Yellow= Transmembrane Receptor and G-Protein Coupled Receptor, Magenta (Pink-
Purple)= Group/Complex/Other, Bright Green= Ion Channel, Hunter Green (Dark Green) =
Peptidase, Navy Blue = transcription regulator, Light Blue=Transporter, Beige= Enzyme,
Orange= Kinase, Light green= Cytokine, Light Purple= Phosphate, Gray= Translation
Regulator, Olive Green=Ligand-dependent nuclear receptor.
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