1,334 research outputs found

    Investigating Multiple Candidate Genes and Nutrients in the Folate Metabolism Pathway to Detect Genetic and Nutritional Risk Factors for Lung Cancer

    Get PDF
    Purpose: Folate metabolism, with its importance to DNA repair, provides a promising region for genetic investigation of lung cancer risk. This project investigates genes (MTHFR, MTR, MTRR, CBS, SHMT1, TYMS), folate metabolism related nutrients (B vitamins, methionine, choline, and betaine) and their gene-nutrient interactions. Methods: We analyzed 115 tag single nucleotide polymorphisms (SNPs) and 15 nutrients from 1239 and 1692 non-Hispanic white, histologically-confirmed lung cancer cases and controls, respectively, using stochastic search variable selection (a Bayesian model averaging approach). Analyses were stratified by current, former, and never smoking status. Results: Rs6893114 in MTRR (odds ratio [OR] = 2.10; 95% credible interval [CI]: 1.20–3.48) and alcohol (drinkers vs. non-drinkers, OR = 0.48; 95% CI: 0.26–0.84) were associated with lung cancer risk in current smokers. Rs13170530 in MTRR (OR = 1.70; 95% CI: 1.10–2.87) and two SNP*nutrient interactions [betaine*rs2658161 (OR = 0.42; 95% CI: 0.19–0.88) and betaine*rs16948305 (OR = 0.54; 95% CI: 0.30–0.91)] were associated with lung cancer risk in former smokers. SNPs in MTRR (rs13162612; OR = 0.25; 95% CI: 0.11–0.58; rs10512948; OR = 0.61; 95% CI: 0.41–0.90; rs2924471; OR = 3.31; 95% CI: 1.66–6.59), and MTHFR (rs9651118; OR = 0.63; 95% CI: 0.43–0.95) and three SNP*nutrient interactions (choline*rs10475407; OR = 1.62; 95% CI: 1.11–2.42; choline*rs11134290; OR = 0.51; 95% CI: 0.27–0.92; and riboflavin*rs8767412; OR = 0.40; 95% CI: 0.15–0.95) were associated with lung cancer risk in never smokers. Conclusions: This study identified possible nutrient and genetic factors related to folate metabolism associated with lung cancer risk, which could potentially lead to nutritional interventions tailored by smoking status to reduce lung cancer risk

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Cruciferous Vegetables and Risk of Cancers of the Gastrointestinal Tract

    Get PDF
    Cancers of the oropharyngeal tissues, oesophagus, stomach and colorectum are amongst the most common causes of death from cancer throughout the world. Higher consumption of fruits and vegetables is thought to be protective, and cruciferous vegetables are of particular interest because of their unique role as a source of biologically active glucosinolate breakdown products. A literature review of primary studies and meta‐analyses indicates that higher consumption of cruciferous vegetables probably reduces the risk of colorectal and gastric cancers by approximately 8% and 19% respectively. Some studies support the hypothesis that the protective effect against colorectal cancer is modified by genetic polymorphisms of genes regulating the expression of enzymes of the glutathione S‐transferase family, but due to contradictory findings the evidence is currently inconclusive. Despite these promising findings, future epidemiological research on the protective effects of cruciferous plants will depend critically upon accurate measurement of dietary exposure, both to the vegetables themselves, and to their active constituents. The development of sensitive chemical assays has facilitated the measurement of urinary excretion of isothiocyanate metabolites as an objective biomarker of intake, but sampling strategies need to be optimised in order to assess long‐term exposures at the population level

    Replication of Lung Cancer Susceptibility Loci at Chromosomes 15q25, 5p15, and 6p21: A Pooled Analysis From the International Lung Cancer Consortium

    Get PDF
    Background Genome-wide association studies have identified three chromosomal regions at 15q25, 5p15, and 6p21 as being associated with the risk of lung cancer. To confirm these associations in independent studies and investigate heterogeneity of these associations within specific subgroups, we conducted a coordinated genotyping study within the International Lung Cancer Consortium based on independent studies that were not included in previous genome-wide association studies. Methods Genotype data for single-nucleotide polymorphisms at chromosomes 15q25 (rs16969968, rs8034191), 5p15 (rs2736100, rs402710), and 6p21 (rs2256543, rs4324798) from 21 case-control studies for 11 645 lung cancer case patients and 14 954 control subjects, of whom 85% were white and 15% were Asian, were pooled. Associations between the variants and the risk of lung cancer were estimated by logistic regression models. All statistical tests were two-sided. Results Associations between 15q25 and the risk of lung cancer were replicated in white ever-smokers (rs16969968: odds ratio [OR] = 1.26, 95% confidence interval [CI] = 1.21 to 1.32, Ptrend = 2 × 10−26), and this association was stronger for those diagnosed at younger ages. There was no association in never-smokers or in Asians between either of the 15q25 variants and the risk of lung cancer. For the chromosome 5p15 region, we confirmed statistically significant associations in whites for both rs2736100 (OR = 1.15, 95% CI = 1.10 to 1.20, Ptrend = 1 × 10−10) and rs402710 (OR = 1.14, 95% CI = 1.09 to 1.19, Ptrend = 5 × 10−8) and identified similar associations in Asians (rs2736100: OR = 1.23, 95% CI = 1.12 to 1.35, Ptrend = 2 × 10−5; rs402710: OR = 1.15, 95% CI = 1.04 to 1.27, Ptrend = .007). The associations between the 5p15 variants and lung cancer differed by histology; odds ratios for rs2736100 were highest in adenocarcinoma and for rs402710 were highest in adenocarcinoma and squamous cell carcinomas. This pattern was observed in both ethnic groups. Neither of the two variants on chromosome 6p21 was associated with the risk of lung cancer. Conclusions In this international genetic association study of lung cancer, previous associations found in white populations were replicated and new associations were identified in Asian populations. Future genetic studies of lung cancer should include detailed stratification by histolog

    Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls

    Get PDF
    Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21-6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10−16), 6p21 (P = 2.3 × 10−14) and 15q25 (P = 2.2 × 10−63). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16INK4A/p14ARF/CDKN2B/p15INK4B/ANRIL; rs1333040, P = 3.0 × 10−7) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10−8). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cance

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF

    Ranking in evolving complex networks

    Get PDF
    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google’s PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes
    corecore