2,073 research outputs found
Do we know the mass of a black hole? Mass of some cosmological black hole models
Using a cosmological black hole model proposed recently, we have calculated
the quasi-local mass of a collapsing structure within a cosmological setting
due to different definitions put forward in the last decades to see how similar
or different they are. It has been shown that the mass within the horizon
follows the familiar Brown-York behavior. It increases, however, outside the
horizon again after a short decrease, in contrast to the Schwarzschild case.
Further away, near the void, outside the collapsed region, and where the
density reaches the background minimum, all the mass definitions roughly
coincide. They differ, however, substantially far from it. Generically, we are
faced with three different Brown-York mass maxima: near the horizon, around the
void between the overdensity region and the background, and another at
cosmological distances corresponding to the cosmological horizon. While the
latter two maxima are always present, the horizon mass maxima is absent before
the onset of the central singularity.Comment: 11 pages, 8 figures, revised version, accepted in General Relativity
and Gravitatio
3D printed fluidics with embedded analytic functionality for automated reaction optimisation
Additive manufacturing or ‘3D printing’ is being developed as a novel manufacturing process for the production of bespoke micro- and milliscale fluidic devices. When coupled with online monitoring and optimisation software, this offers an advanced, customised method for performing automated chemical synthesis. This paper reports the use of two additive manufacturing processes, stereolithography and selective laser melting, to create multifunctional fluidic devices with embedded reaction monitoring capability. The selectively laser melted parts are the first published examples of multifunctional 3D printed metal fluidic devices. These devices allow high temperature and pressure chemistry to be performed in solvent systems destructive to the majority of devices manufactured via stereolithography, polymer jetting and fused deposition modelling processes previously utilised for this application. These devices were integrated with commercially available flow chemistry, chromatographic and spectroscopic analysis equipment, allowing automated online and inline optimisation of the reaction medium. This set-up allowed the optimisation of two reactions, a ketone functional group interconversion and a fused polycyclic heterocycle formation, via spectroscopic and chromatographic analysis
Primordial Black Holes: Observational Characteristics of The Final Evaporation
Many early universe theories predict the creation of Primordial Black Holes
(PBHs). PBHs could have masses ranging from the Planck mass to 10^5 solar
masses or higher depending on the size of the universe at formation. A Black
Hole (BH) has a Hawking temperature which is inversely proportional to its
mass. Hence a sufficiently small BH will quasi-thermally radiate particles at
an ever-increasing rate as emission lowers its mass and raises its temperature.
The final moments of this evaporation phase should be explosive and its
description is dependent on the particle physics model. In this work we
investigate the final few seconds of BH evaporation, using the Standard Model
and incorporating the most recent Large Hadron Collider (LHC) results, and
provide a new parameterization for the instantaneous emission spectrum. We
calculate for the first time energy-dependent PBH burst light curves in the
GeV/TeV energy range. Moreover, we explore PBH burst search methods and
potential observational PBH burst signatures. We have found a unique signature
in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray
observatories such as the High Altitude Water Cerenkov (HAWC) observatory. The
implications of beyond the Standard Model theories on the PBH burst
observational characteristics are also discussed, including potential
sensitivity of the instantaneous photon detection rate to a squark threshold in
the 5 -10 TeV range.Comment: Accepted to Astroparticle Physics Journal (71 Pages, 22 Figures
Growth, competition and cooperation in spatial population genetics
We study an individual based model describing competition in space between
two different alleles. Although the model is similar in spirit to classic
models of spatial population genetics such as the stepping stone model, here
however space is continuous and the total density of competing individuals
fluctuates due to demographic stochasticity. By means of analytics and
numerical simulations, we study the behavior of fixation probabilities,
fixation times, and heterozygosity, in a neutral setting and in cases where the
two species can compete or cooperate. By concluding with examples in which
individuals are transported by fluid flows, we argue that this model is a
natural choice to describe competition in marine environments.Comment: 29 pages, 14 figures; revised version including a section with
results in the presence of fluid flow
Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate
We report on the experimental observation of vortex formation and production
of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an
external oscillatory perturbation. The oscillatory perturbations start by
exciting quadrupolar and scissors modes of the condensate. Then regular
vortices are observed finally evolving to a vortex tangle configuration. The
vortex tangle is a signature of the presence of a turbulent regime in the
cloud. We also show that this turbulent cloud has suppression of the aspect
ratio inversion typically observed in quantum degenerate bosonic gases during
free expansion.Comment: to appear in JLTP - QFS 200
Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings
Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal
barrier coatings have been developed via low activity chemical vapor deposition and high activity
pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on
NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed
when switching processes. The structural evolution of each coating at various stages of the
fabrication process has been and subsequent cyclic oxidation is presented, and the relevant
interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of
these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the
formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in
need of further improvement in both cases
Shape Analysis in the Absence of Pointers and Structure
discover properties of dynamic and/or mutable structures. We ask, “Is there an equivalent to shape analysis for purely functional programs, and if so, what ‘shapes ’ does it discover? ” By treating binding environments as dynamically allocated structures, by treating bindings as addresses, and by treating value environments as heaps, we argue that we can analyze the “shape ” of higher-order functions. To demonstrate this, we enrich an abstract-interpretive control-flow analysis with principles from shape analysis. In particular, we promote “anodization ” as a way to generalize both singleton abstraction and the notion of focusing, and we promote “binding invariants ” as the analog of shape predicates. Our analysis enables two optimizations known to be beyond the reach of control-flow analysis (globalization and super-β inlining) and one previously unknown optimization (higher-order rematerialization).
Phase Identification and Internal Stress Analysis of Steamside Oxides on Plant Exposed Superheater Tubes
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
- …
