
 

Growth, Competition and Cooperation in Spatial Population
Genetics

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Pigolotti, S., R. Benzi, P. Perlekar, M. H. Jensen, F. Toschi, and
David R. Nelson. 2013. "Growth, Competition and Cooperation
in Spatial Population Genetics." Theoretical Population Biology
84 (March): 72–86.

Published Version doi:10.1016/j.tpb.2012.12.002

Accessed February 17, 2015 1:59:36 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:13457896

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-
of-use#OAP

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Harvard University - DASH 

https://core.ac.uk/display/28951709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/13457896&title=Growth%2C+Competition+and+Cooperation+in+Spatial+Population+Genetics
http://dx.doi.org/10.1016/j.tpb.2012.12.002
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13457896
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP


ar
X

iv
:1

20
8.

49
73

v2
  [

q-
bi

o.
P

E
]  

18
 D

ec
 2

01
2

Growth, competition and cooperation in spatial population
genetics

S. Pigolottia,∗, R. Benzib, P. Perlekarc, M. H. Jensend, F. Toschic, D. R. Nelsone

aDept. de Fisica i Eng. Nuclear, Universitat Politecnica de Catalunya Edif. GAIA, Rambla Sant Nebridi s/n, 08222
Terrassa, Barcelona, Spain.

bDipartimento di Fisica, Universita’ di Roma “Tor Vergata” and INFN, via della Ricerca Scientifica 1, 00133 Roma,
Italy.

cDepartment of Physics, Department of Mathematics and Computer Science, and J.M. Burgerscentrum, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands

dThe Niels Bohr Institut, Blegdamsvej 17, DD-2100 Copenhagen, Denmark.
eLyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract

We study an individual based model describing competition in space between two different alle-
les. Although the model is similar in spirit to classic models of spatial population genetics such
as the stepping stone model, here however space is continuous and the total density of competing
individuals fluctuates due to demographic stochasticity. By means of analytics and numerical
simulations, we study the behavior of fixation probabilities, fixation times, and heterozygosity,
in a neutral setting and in cases where the two species can compete or cooperate. By concluding
with examples in which individuals are transported by fluid flows, we argue that this model is a
natural choice to describe competition in marine environments.
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1. Introduction

A mathematical analysis of the fate of mutations in spatially extended populations has been a
classic topic of research in population genetics for at least seventy years (Fisher, 1937; Kolmogorov et al.,
1937; Wright, 1943; Kimura, 1953; Kimura and Weiss, 1964). This interest has nevertheless in-
creased recently, as improved sequencing technology allows direct observations of structured
genetic diversity in space for many different species.

On the theoretical side, a landmark in this research has beenthe stepping stone model (SSM)
proposed by Kimura (Kimura, 1953; Kimura and Weiss, 1964). This model considersm islands
(or “demes”), each having a fixed local population sizeNl and arranged along a line or in a regular
lattice in more than one spatial dimension. The population on each island is made up of several
species (or alleles) described by, e.g., a Wright-Fisher orMoran process. Spatial migration is
modeled by assuming that neighboring islands exchange individuals at some given rate.

It is often convenient to describe the state of the system in terms of the macroscopic density
of individuals f (x, t) carrying one of the two alleles. In the continuum limit, themacroscopic
equation governing the time evolution of such density reads

∂t f (x, t) = D∇2 f (x, t) + s f(1− f ) +

√

f (1− f )
N

ξ(x, t) (1)

whereN = Nl/ad, a is the lattice spacing between two neighboring islands1, d the spatial dimen-
sion, andξ(x, t) is a Gaussian stochastic process, delta correlated in space and time,〈ξ(x, t)ξ(x′, t′)〉 =
δ(x − x′)δ(t − t′). Here, f = 1 means an island exclusively populated with one allele andf = 0
means exclusive occupation by the alternative genotype. The nonlinearity multiplying the noise
requires an interpretation in terms of the Ito calculus (Korolev et al., 2009).

However, in many realistic cases, the mechanism of species movement and range expan-
sion is more complicated than a simple diffusion process. For example, recent observations on
crabs colonies along the east coast of north America (Pringle et al., 2011) demonstrated how in-
vasion of one allele is controlled by the asymmetrical advection of larvae from north to south
by a coastal current. The interplay between population genetics and individual movement (and
transport) can be even more complex in the open ocean, where individuals belonging to dif-
ferent planktonic and bacterial species are stirred and mixed by chaotic flows (Tel et al., 2005;
Neufeld and Hernandez-Garcia, 2009; D’Ovidio et al., 2010;Perlekar et al., 2010; Benzi et al.,
2012). Of particular interest is the population genetics ofphotosynthetic organisms that control
their buoyancy to remain near the surface of an aquatic environment. In this case, the advect-
ing flows are effectively compressible, leading to population densities that overshoot the normal
carrying capacity (Perlekar et al., 2010; Pigolotti et al.,2012).

While the SSM can be generalized to include a constant asymmetric diffusion (see i.e. (Pringle et al.,
2011)), the extension to more complex fluid environments is more subtle. One of the main un-
derlying assumptions of the SSM – a local population size that does not vary either in time nor
in space – is quickly violated in aquatic environments whereflows create inhomogeneities in the
total density of individuals. Individual-based competition models without strict population size

1It is convenient to distinguish betweenNl (the population inside a single discrete deme of the SSM) andN (the
corresponding total density of individuals). The former isthe quantity used to define the model, while the latter deter-
mines the amplitude of the noise due to number fluctuations inthe continuum formulation of Eq. (1). Notice thatNl is a
non-dimensional quantity, whileN is a density, carrying units of an inverse length to the powerd in d dimensions.
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conservation have already been studied, for example allowing for the possibility of empty sites
(Neuhauser, 1991; O’Malley et al., 2006b,a; spatial competition under a reproductionmortality constraint,
2009; Cencini et al., 2012). However, when flows are introduced, it is also less appropriate to
discretize the system in space into demes with a fixed size. Incompressible turbulence, for
example, the density of individuals can be inhomogeneous ona wide variety of spatial scales
(Perlekar et al., 2010), even inside a single deme (which in the SSM is assumed to be well-
mixed).

In this paper, with the goal of describing population genetics in aquatic environments in
mind, we introduce a new model in which individuals carryingtwo different allelesA andB live
in a continuous space. Their individual densities are allowed to grow and fluctuate, including
the important possibility of overshooting the natural carrying capacity. Indeed, note that naively
assuming compressible flows that makef > 1 would lead to an imaginary noise amplitude in Eq.
(1)! The model we study is similar in spirit to the stochasticlogistic equation (Law et al., 2003;
Hernandez-Garcia and Lopez, 2004; Birch and Young, 2006). However, in this study we focus
on competition and cooperation oftwo species, rather than the stochastic growth of a single
population. The second difference is that previous studies focused on patterns formed by the
non-local nature of competition (Hernandez-Garcia and Lopez, 2004; Birch and Young, 2006).
In this paper, we mostly focus on the parameter range in whichsuch patterns are not formed and
a weak noise description in the spirit of Eq. (1) is appropriate.

The phenomenology of such a model, even in the presence of very simple flows, is very
rich due to the interplay between population dynamics and fluid advection (see Pigolotti et al.
(2012) for some of the consequences in one dimension). For this reason, we devote a large
portion of this work to the case in which the flow is absent and individuals move in space in
a diffusive way. This simple case allows for a systematic comparison with the known results
of the SSM. In particular, we show that there exists a parameter range where the predictions of
our model are consistent with Eq. (1) and its generalizationto include competitive exclusion
and mutualism (Korolev and Nelson, 2011). In simple cases, such as when the two species are
neutral variants of each other, this correspondence can be shown analytically. In more complex
cases, the correspondence is explored by means of numericalsimulations. The last part of the
work discusses an example in which a compressible flow transport the individuals, as an example
of a problem that cannot be treated within the context of the SSM.

In Sec. 2, we sketch the model of growth, competition and cooperation studied here, which
leads to the two-species model for allele densitiescA(x, t) andcB(x, t) summarized in Eq. (3).
We focus on three interesting cases: (1) strictly neutral competitions, (2) a reproductive advan-
tage of one species over the other and (3) mutualistic situations where cooperation plays a role.
Sec. 3 discusses the behavior of our model in the “zero-dimensional” well-mixed case in which
the population is not structured in space, which allows us todetermine limits such that standard
Wright-Fisher and Moran results for population genetics can be recovered from our more general
model. We then explore in Sec. 4 the long-time behavior of ourmodel without fluid advection
in one and two spatial dimensions. Examples of the behavior of the model in the presence of
fluid advection are discussed in Sec. 5. Concluding remarks are presented in Sec. 6. A de-
tailed derivation of our model equation is contained in Appendix A. Appendix B shows how
conventional stepping stone model results can be recoveredin certain limits. Appendix C de-
scribes a limit in which a mutualistic generalization of thefamous Kimura formula for fixation
probabilities (Crow and Kimura, 1970) is possible.
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2. Model

Many widely studied models of population genetics in space,the most notable example being
the stepping stone model, consider individuals carrying different alleles that occupy sites (also
called “demes”) on a lattice. It is commonly assumed that each site is always saturated up to
its carrying capacity, so that, at each deme, the local population sizeNl is constant during the
dynamics.

We relax these assumptions by considering discrete individualsXi carrying different alleles
(denoted by the indexi) and diffusing in continuous space (with a diffusion constantD, for
simplicity equal for all individuals). Further, we implement population dynamics assuming that
individuals carrying allelei reproduce at rateµi and die with rates̃λi j proportional to the number
of individuals carrying a (possibly) different allelej in a region of spatial sizeδ centered on their
position. For example, in one dimension (1d), δ will be an interaction length, while in 2d it
will be an interaction area. In a language borrowed from chemical kinetics, the “reactions” we
consider are:

Xi
µi→ 2Xi (reproduction)

Xi + X j
λ̃i j→ Xi (death by competition) (2)

In the case of a single species, this set of reactions is commonly referred to as the birth-
coagulation process (Doering et al., 2003). In this paper, we will focus on the case of two alleles,
i = A, B. Other reactions could be added to the ones above, for example the possibility that
an individual can die even in absence of competition,Xi → ∅, or reactions implementing more
complex biological interactions. We will limit ourselves to the biological dynamics embodied in
(2), which contains minimal ingredients necessary to generate most of the main features present
in more complicated models. Notice that, in contrast to models such as the Moran process, the
density of individuals is not fixed but fluctuates both locally and globally.

In order to make the presentation more compact, we start by discussing the spatially explicit
version of the model and then discuss the globally well-mixed version as a limiting case. We
consider the number densitiesnA(x, t) andnB(x, t), that integrated over a region of space yield
the (stochastic) number of individuals of speciesA or B in that region. We will study cases in
which the number densities are typically large, and consequently define concentrationscA(x, t) =
nA(x, t)/N andcB(x, t) = nB(x, t)/N via a constant parameterN, assumed to be of the same order
of magnitude ofnA andnB. This means that, by definition, a constant densityc = 1 corresponds
to a uniform distribution ofN individuals in a segment of length 1 in one dimension. More
generally, ind dimensions, a concentrationc(x, t) = 1 will correspond to a total number of
particlesN = NLd in a system of linear sizeL. With this choice, the macroscopic equations
describing the dynamics of the concentrationscA, cB of speciesA andB read:

∂

∂t
cA = D∇2cA + cA(µA − λAAcA − λABcB) +

√

cA(µA + λAAcA + λABcB)
N

ξ

∂

∂t
cB = D∇2cB + cB(µB − λBAcA − λBBcB) +

√

cB(µB + λBAcA + λBBcB)
N

ξ′ (3)

whereξ(x, t) and ξ′(x, t) are independent Gaussian random variables, delta-correlated in
space and time,< ξ(x, t)ξ(x, t′) >= δ(t − t′)δ(x − x′) that should be interpreted according to
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the Ito prescription (Korolev et al., 2009). The macroscopic binary reaction ratesλi j multiplying
the quadratic terms in the concentrations are defined in terms of the microscopic binary ratesλ̃i j

asλi j = Nδλ̃i j , whereδ is the interaction domain defined above. In the following, wewill focus
on cases in which theµi ’s and theλi j ’s are of the same order of magnitude, so that typical values
of the total concentrationcA + cB are order 1. Under these assumptions, it is useful to note that
the quantity 2N−1 = 2δ/(λ̃i j/λi j ) plays here the same role of the genetic diffusion constant in the
stepping stone model. In particular,δ is analogous of the lattice spacing, while the denominator
on the right hand side can be thought as the carrying capacityof each deme. A detailed derivation
of Eqs. (3), together with a discussion of its limits of validity, is presented in Appendix A. If the
species densities are well-mixed and we neglect stochasticnumber fluctuations, the determinis-
tic dynamics embodied in Eqs. (3) is a familiar model of growth, selection and competition in
asexual populations (Smith, 1998). The four different types of dynamics that emerge depending
on the values of theλi j ’s are reviewed at the end of this section. Our aim here is to understand
the rich behaviors possible whenbothspatial variations and number fluctuations are allowed.

To limit the parameter space, we will consider the followingthree biologically relevant
choices for the reaction rates:

1. Neutral Theory
This choice is appropriate when the two biological species (or strains, or mutants and
wild type alleles) are neutral variants of each other. This means that their growth rates
and carrying capacities are the same; further, competitionwith an individual belonging to
the same species is the same as competition with an individual of the other species. In
formulas, for Eq. (3), a convenient neutral parameter choice is: µA = µB = λAA = λAB =

λBA = λBB = µ.
2. Reproductive advantage

In this setting, we depart from neutrality by allowing for a different reproduction rate of
speciesA: µA = µ(1+ s) while all the other rates (including theλi j ) are equal toµ as in the
neutral case. We will study this case to explore the effect of a selective advantage of one
of the two species on the dynamics of the model. In particular, s > 0 implies a selective
advantage forA ands< 0 is a disadvantage. Clearly, neutrality is recovered fors= 0.

3. Mutualistic setting
A simple way to study mutualistic interactions is to assume that the only departure from
neutrality occurs in the intensity of competition between individuals carrying different
alleles. In formulas, we haveµA = µB = µ, λAA = µ, λBB = µ, λAB = µ(1 − ǫA), and
λBA = µ(1 − ǫB). The corresponding macroscopic equations are well definedonly for
ǫA, ǫB ≤ 1, so that the competition ratesλi j are non-negative. We will focus mostly on the
caseǫA > 0 andǫB > 0. In this regime, spatial number fluctuations play an important role
(Korolev and Nelson, 2011) and competition between speciesis reduced (we will interpret
this reduction as the effect of mutualistic interactions). Other choice could also be of
interest, for exampleǫA = 0 andǫB < 0 is another way of allowing a competitive advantage
of A over B (in this case, via enhanced competition rather than via a larger reproduction
rate). We note finally thatǫA < 0, ǫB < 0 corresponds to a competitive exclusion model,
arising for example when the competing variants secret toxins that inhibit the growth of
their competitors.

In the following, we will measure time in units of a generation time so thatµ = 1. A convenient
choice of the interaction domain is of the order of the average spacing among individuals,δ =
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1/N, so thatλi j = λ̃i j . This choice also impliesNl = 1. For simplicity, we will present most
of the spatial results for the one-dimensional version of the model, introducing two-dimensional
results only as appropriate. In the spatially explicit case, the system is a segment of lengthL
with periodic boundary conditions. We will present also twodimensional simulations, where the
system is aL × L square, also with periodic boundary conditions.

An even simpler setting we will study to make contact with traditional Moran or Fisher-
Wright models is the case in which the population can be assumed to be well-mixed, or “zero-
dimensional”. This limiting case can be easily obtained from the one dimensional case by setting
δ = L = 1 and ignoring spatial diffusion, since each individual now interacts with every other
individual in the population. As a consequence of this choice, one now hasN = λi j/λ̃i j . In this
case, the spatial position of the individuals is irrelevantfor biological interactions. Clearly, in this
special case, the individual density is equivalent to the total number of individualsN ≡ Nl ≡ N.

Both in the spatial and well-mixed cases, we will compare analytical predictions obtained
from the continuum theory of Eqs. (3) with simulations of theindividual-based dynamics en-
coded in the reactions of Eqs. (2). Details on the numerical scheme implemented for the
individual-based model are in Appendix A and in (Perlekar etal., 2011).

Figure 1: Three illustrative parameters choices in the one dimensional version of the model. In all panelsD = 10−4 and
N = 100. The left panel corresponds to the neutral choice in which all rates are set to one and initially the two species are
randomly distributed with equal concentrations. In the center panel, all parameters are set to one except the reproduction
rate of alleleA (in red) which reproduces at a rate (1+ s) with a large selective advantages = 0.3; in this case, the
initial fraction of A is 0.1. In the right panel, competition among species is reduced by taking ǫA = ǫB = 0.7 to enhance
mutualism; in this case the two species are randomly distributed with equal concentrations in the initial condition. Inthis
case, mutualism insures that the species (or alleles) remain spatially inhomogeneous out to very long times.

In Fig. (1), we anticipate some of the results to illustrate the qualitative behaviors that can be
explored with the three aforementioned parameter choices in one spatial dimension. In the left
panel, the two alleles are neutral. Despite fluctuation of the total density, the phenomenology is
similar to that of the 1d stepping stone model: as time progresses, the two alleles are demixed and
fixation occurs by coalescence of the domain boundaries, which can be regarded as annihilating
random walks. In the central panel, speciesA (in red) initially constitutes only 10% of the total
population; however, it has a reproductive advantage over speciesB. Despite the discreteness
of individuals and density fluctuations, there are two noisyFisher waves by which the initial
minority can take over the entire population. Finally, in the right panel we simulate a case in
which mixing of the two species is promoted by reducing competition among different alleles.
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In this case, we expect the two species to remain mixed indefinitely in the limit of large system
size.

In the remainder of this section, we introduce some of the concepts we want to investigate in
the simple case of a well mixed system without number fluctuations. Intuition about mutualistic
behavior (and its opposite, competitive exclusion (Frey, 2010)) can be obtained by neglecting
both the spatial degrees of freedom and the noise terms in Eq.(3). In this simple case, the
dynamics reduces to (Korolev et al., 2012)

d
dt

nA(t) = nA(t)
[

µA − λ̃AAnA(t) − λ̃ABnB(t)
]

d
dt

nB(t) = nB(t)
[

µB − λ̃BAnA(t) − λ̃BBnB(t)
]

. (4)

Note that the intrinsic carrying capacities (i.e., the steady state densities of one species when the
other is absent) for this model areNA = µA/λ̃AA and NB = µB/λ̃BB. These quantities (we
always choose parameters such thatNA ≈ NB) play the role of the parameterN that controls
stochastic number fluctuations in the general case of Eq. (3). As mentioned above for case 3, an
especially interesting situation arises when (1) the two species grow at identical rates when the
numbers are dilute, so thatµA = µB = µ; (2) also the self-competition terms are also identical,
λ̃AA = λ̃BB; and (3) the effect of cooperation or competitive exclusion is contained exclusively in
the cross-interactions,λ̃AB ≡ λ̃AA(1− ǫA) andλBA ≡ λ̃BB(1− ǫB). With this choice, and rescaling
the time unit by a factorµ−1, the equations for the concentrationscA = nA/NA andcB = nB/nB

corresponding to system (4) read

d
dt

cA = cA [1 − cA − cB + ǫAcB]

d
dt

cB = cB [1 − cA − cB + ǫBcA] . (5)

The remaining two parametersǫA andǫB control the competition under “crowded conditions”,
such that the populations have grown up to satisfycA + cB ≈ 1. If the two variants are nearly
identical, it is reasonable to assume|ǫA|, |ǫB| ≪ 1. As illustrated in Fig. 2, the deterministic
system (5) always has fixed points at (0, 0), (0, 1), and (1, 0). Depending on the parameters, there
can also be a fourth fixed point (Smith, 1998) located at

(c∗A, c
∗
B) =

(ǫA, ǫB)
ǫA + ǫB − ǫAǫB

. (6)

When cooperation is favored (ǫA, ǫB > 0, Fig. 2a) this fixed point is stable, and leads to a steady
state population fractionf ∗ of A individuals, 0< f ∗ < 1, with

f ∗ ≡
c∗A

c∗A + c∗B
=

ǫA

ǫA + ǫB
. (7)

When competitive exclusion (Frey, 2010) is favored (ǫA, ǫB < 0, fig. 2b) this fixed point is un-
stable to the attracting fixed points (1, 0) or (0, 1), depending on the initial conditions. Genetic
demixing, present in strictly neutral systems only due to stochastic number fluctuations, isen-
hancedin this case. Finally, whenǫA andǫB haveoppositesigns, the fixed point (6) lies outside
the biologically relevant domain, and one of the two fixed points (1, 0) or (0, 1) becomes globally
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Figure 2: Deterministic dynamics of the mutualistic model in zero dimensions without number fluctuations. In a), the
interactionsǫA > 0 andǫB > 0 favor cooperation, and there is a stable fixed point (c∗A, c

∗
B) with both densities nonzero.

In B), the organisms secrete toxins that impede each others growth, soǫA < 0 andǫB < 0 and the fixed point (c∗A, c
∗
B) is

unstable.

stable, corresponding to a competitive advantage for one species or the other when the population
is dense.

Suppose we now introduce spatial migration and number fluctuations, to recover the full
model defined by Eq. (3). When might we expect fixation probabilities, the global heterozy-
gosity, correlation functions etc. to reduce to the familiar results for conventional spatial step-
ping stone-type models with strictly conserved populationsizes in every deme? A particularly
simple case, corresponding to the selectively neutral limit ǫA = ǫB = 0, is illustrated for a well-
mixed system in Fig. 3a below: the population grows up and eventually wanders along the line
cA + cB = 1, until it reaches the absorbing states at (1, 0) or (0, 1). A more general situation is
ǫA + ǫB = 0, in which case one variant typically has a simple selectiveadvantage along an invari-
ant subspace given by the linecA + cB = 1. If the fluctuations transverse to this line are small
(corresponding to a large population size), then the usual formulas for fixation probabilities hold,
as we show later in this paper. In more general situations, however, it is no longer exactly true
that the population localizes at long times near the straight line cA + cB = 1. Indeed, we have
from Eq. (6) that

c∗A + c∗B =
ǫA + ǫB

ǫA + ǫB − ǫAǫB
, (8)

which exceeds 1 along the outwardly bowed incoming trajectories in Fig. 2a, and is less than 1
for the outgoing inwardly curved trajectory in Fig. 2b. However, we do have the approximate
equality,c∗A + c∗B ≈ 1, provided|ǫA + ǫB| ≪ |ǫAǫB| in Eq. (8). In this limit, a combination of
numerical and analytic arguments presented in this paper show that formulas recently derived
for mutualistic and competitive exclusion stepping stone models (Korolev and Nelson, 2011)
apply to the current model with demographic fluctuations as well, again provided that the overall
population sizeN is sufficiently large.

What happens ifµA andµB are unequal, butǫA andǫB remain small? In this case, the popula-
tion proportions will certainly change as an initially small population like that in Fig. 3a grows to
approach the linecA + cB ≈ 1. However, once this line is reached, the subsequent time evolution
should again be given by stepping stone model results.

8



3. Well-mixed case with number fluctuations

In this section, we present the results in the simple well-mixed (or “zero-dimensional”) ver-
sion of the model. Thus, we keep number fluctuations in Eq. (3), but neglect spatial variations in
the allele concentrations.

3.1. Neutral theory

As previously discussed, it is useful to describe the dynamics of the neutral version of the
model in thecA vs. cB plane, as depicted in Fig. (3, left). Starting from a dilute initial condition,
the system evolves rapidly towards to the intrinsic overallcarrying capacity given bycA+cB = 1.
The dynamics is then localized near this line (with fluctuations), until one of the two species goes
extinct. This behavior contrasts with the Moran process in which the dynamics is rigidly confined
to thecA + cB = 1 line, since no fluctuations of the total density are allowed. To determine when
these fluctuations are small, first note from Eq. (3) that in the neutral case the total concentration
cT = cA + cB obeys a closed equation:

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

c B

cA

10-3

10-2

10-1

100

101

 0  250  500  750  1000

<
H

(t
)>

t

N=200
N = 500
N=750

N = 1000

10-2

100

 0  1  2  3  4
<

H
(t

)>

t/N

a) b)

Figure 3: Neutral dynamics in the well-mixed case. (a) Example of a trajectory in the (cA, cB) plane withN = 500. The
initial condition isnA = nB = 20, i.e. a small fraction of a typical long time carrying capacity. (b) Decay of the average
heterozygosity〈H(t)〉 for different values ofN. Curves are obtained from simulations of the particle model; each curve
is an average over 104 realizations and the error bars are smaller than the size of the lines. (inset) Same curves plotted as
a function oft/N. Note the data collapse.

d
dt

cT = µcT (1− cT) +

√

µcT(1+ cT)
N

ξc, (9)

decoupled from the fraction of speciesA, f = cA/(cA + cB), where the noise termξc satisfies
〈ξc(t)ξc(t′)〉 = δ(t − t′). WhenN is large, the stationary solution, beside the solutionP(c) =
δ(c) corresponding to global extinction that will eventually be reached2 on long times of order

2Notice that, as in the particle model for simplicity death isimplemented only via binary reactions (see Eq. 2), the
state of global extinction is not accessible in the particlemodel. Such discrepancy with the macroscopic equation could
be easily removed by allowing for death even in absence of competition, i.e. the reactionXi → ∅.
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exp(N), is approximately a Gaussian with average〈cT〉 = 1 and variance〈c2
T〉 − 〈cT〉2 = N−1,

which is small whenN is large.
We now describe the dynamics of the relative fractionf of individuals carrying alleleA,

f = cA/(cA + cB). The equation forf (t), derived in Appendix B, reads

d
dt

f =

√

µ f (1− f )
1+ cT

NcT
ξ f . (10)

whereξ f (t) also satisfies〈ξ f (t)ξ f (t′)〉 = δ(t − t′), and further we have〈ξ f (t)ξc(t′)〉 = 0.
The above equation allows us to analyze the global heterozygosity, which quantifies the loss of
diversity as time evolves and is defined as the probabilityH(t) = 2〈 f (1− f )〉 that two randomly
chosen individuals in the population carry different alleles.

As mentioned above, the equation forcT is independent off in the neutral case studied here.
As a result, one can factorize the average overcT and f in the equation forH(t):

d
dt

H(t) = − µ
N

〈

f (1− f )
1+ cT

cT

〉

= − µ
N
〈 f (1− f )〉

〈

1+ cT

cT

〉

= −2µ
N

H(t) +O

(

1
N2

)

. (11)

Neglecting the correction of orderN−2, we recover for our model with density fluctuations
the closed equation forH(t) for Fisher-Wright and Moran-type models with a fixed population
size derived by Kimura, which states that the total heterozygosity decays exponentially in well
mixed neutral systems (Crow and Kimura, 1970):

〈H(t)〉 = H(0) exp(−2µt/N) (12)

Fig. (3b) confirms this exponential behavior in simulationsof the model.

3.2. Reproductive advantage
In a well-mixed finite population and in absence of mutations, diversity will be lost and only

one of the two alleles will survive after a long enough time. We now study the probability of
allele A to fixate in a well-mixed population of sizeN ≫ 1, in the case in which the allele
confers a small reproductive advantages≪ 1. In the same spirit as the previous section, we can
derive the equation for the relative fractionf = cA/(cA+cB) (see Appendix B). Upon neglecting
terms proportional tos/N, the equation in this case reads:

d
dt

f = µs f(1− f ) +

√

µ f (1− f )
1+ cT

NcT
ξ (13)

As in Eq. 10, this result must be supplemented with the equation for the total concentration
cT = cA + cB. Although in the non-neutral case the equation forcT is no longer independent of
f , one can show that the averages overcT and f factorize up to terms of orders/N or higher that
can be safely neglected fors≪ 1 andN ≫ 1.

These observations allows us to recover the formula for the probability of fixation of alleleA
(Crow and Kimura, 1970).

pf ix =
1− e−sN f0

1− e−sN
(14)

where f0 is the fraction of individuals carrying alleleA once trajectories like that in Fig (3a)
reach the linecA + cB = 1. This result is again similar to Fisher-Wright or Moran models with a
strictly fixed total population size. Eq. (14) is tested withsimulations in Fig. 4.
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Figure 4: Fixation in the well-mixed case with reproductiveadvantage. Probability of fixation for different values ofs
andN (listed in the figure) for the well-mixed version of the particle model, compared with the prediction of Eq. (14).
The initial fraction of individuals belonging to speciesA is f0 = 0.1, with cT = 1 initially. The inset shows that all curves
collapse when plotted as a function ofsN. These curves are again averages over 104 independent realizations.

3.3. Mutualism

In the well-mixed limit of the mutualistic model, fixation always occurs at (cA, cB) = (1, 0) or
(0, 1) after a long enough time. However, when the total number ofindividuals is large, this time
grows exponentially withN and can easily become inaccessible to experiments (and simulations).
As detailed in Appendix C, the quasi-stationary solution where the two cooperating species
coexist forǫA, ǫB > 0 can be seen as a state confined by two potential barriers, oneinhibiting
speciesA to fixate and the other inhibiting speciesB to fixate. WhenN is large, it will be
extremely probable that fixation will occur by passing the lowest of these two barriers. In this
case, an estimate of the timet∗ needed to reach fixation can be derived by calculating the height
of the lowest barrier and applying Kramer’s escape rate theory. The result is:

t∗ ∼ exp













N
2

min(ǫ2A, ǫ
2
B)

ǫA + ǫB













. (15)

Figure (5) shows a heat map of the total heterozygosity in the(ǫA, ǫB plane forN = 500 after
5000 generations. The black region is where fixation occurred. Green lines are the theoretical
limits of the apparent coexistence region obtained from Eq.15.

After estimating the fixation time in the mutualistic model,we now ask: what is the fixation
probability of one of the two alleles? In Appendix C, we show that in the appropriate limit the
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Figure 5: Finite-time coexistence in the well-mixed mutualistic model. Average heterozygosity in the (ǫA, ǫB) plane, with
N = 500, ind = 0 dimensions, i.e. for the well-mixed model. Simulations are run until a timet = 5000. For each pair of
(ǫA, ǫB) values, after a transient, the heterozygosity approachesa quasi-stationary value. The green line limits the region
in which coexistence up to this time is possible according tothe estimate (15).

fixation probability for mutualists obeys a formula similarto the result for a stepping stone model
with fixedtotal population size (Korolev and Nelson, 2011), namely

u( f0) =

∫ f0
0

e
1
2 Ns( f ∗−p)2

∫ 1

0
e

1
2 Ns( f ∗−p)2

, (16)

wheref0 is the initial fraction of alleleA. In the limit f ∗ → ∞, s→ 0, with a mutualistic effective
selective advantage ˜s= f ∗sfixed, this reduces to the famous Kimura formula discussed above

u( f0) =
1− e−Ns̃ f0

1− e−Ns̃
(17)

The formulas above are a good approximation for arbitrary initial conditions only for the
case of equal initial growth ratesµA = µB = µ, so that population fractions are approximately
unchanged prior to reaching the linecA + cB ≈ 1. We explore the fixation probabilities in three
different cases, each having a different definition of selective advantage:

• ǫA + ǫB = 0. UnlessǫA = ǫB = 0, this corresponds to a selective advantage under crowded
conditions, such thatcA + cB ≈ 1. In the previous section, we discussed how in the
deterministic limit there are two stable fixed points, (c∗A, c

∗
B) = (1, 0) and (c∗A, c

∗
B) = (0, 1),

while the fixed point with bothc∗A and c∗A nonzero is inaccessible. Fig. 6a shows the
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Figure 6: Fixation probabilitiesu(s̃, f0,N)in the mutualistic model. Full curves show the analytical results from Eq.
(C.9) with initial fraction f0 = nA(0)/(nA(0) + nB(0). a) Competitive exclusion: Simulations withǫA + ǫB = 0 with
−0.08 < ǫA < 0.2,N = 250: Red curve: f0 = 0.1, blue curvef0 = 0.5. Green and purple curves: Eq. (17) with
−0.08 < s̃ < 0.2,N = 250, f0 = 0.1 (green),f0 = 0.5 (purple). The curves are plotted against the scaling variable s̃∗ N
for different initial frequenciesf0. Here (and also in b),c)) the initial condition is chosen on the linenA(0)+ nB(0) = N.
b) Mutualism: Green curve: simulations withǫA = ǫB = 0.1,N = 100, f ∗ = 0.5. The fixation probabilityu is plotted
versus the initial fractionf0. Red curve: Fixation formula (17) withN = 100, s̃ = 0.1, f ∗ = 0.5. c) Coordination game
with an unstable fixed pointf ∗: Green; purple; orange curves: simulations withǫA = −0.05, ǫB = −0.15(f ∗ = 0.25);ǫA =
−0.10, ǫB = −0.10(f ∗ = 0.50);ǫA = −0.15, ǫB = −0.05(f ∗ = 0.75) . Red; blue; cyan curves: Fixation formula (C.9)
with N = 100, s̃/ f ∗ = −0.2, f ∗ = 0.25; 0.5; 0.75. d) Mutualism with stochastic initial conditions. Simulations with
initial conditionsnA(0), nB(0) are uniformly distributed in the plane of sizeN×N with N = 100. For each random initial
condition, which fixes the value off0, the fixation probability is averaged over 500 independent Gillespie simulations
resulting inu( f0). Cyan points:ǫA = 0.05, ǫB = 0.15, f ∗ = 0.25; blue points:ǫA = 0.10, ǫB = 0.10, f ∗ = 0.5; red points:
ǫA = 0.15, ǫB = 0.05f ∗ = 0.75. Full curves: fixation formula (C.9) withN = 100, s̃/ f ∗ = 0.2: Brown: f ∗ = 0.25; purple:
f ∗ = 0.25; greenf ∗ = 0.75.

fixation probability forcA(t = 0) + cB(t = 0) = 1 and two initial frequenciesf0 = 0.5,
f0 = 0.1, N = 250, f ∗ = ǫA/(ǫA + ǫB) and effective selective advantage ˜s = µǫA = −µǫB.
The population sizeN appears through the combination ˜s ∗ N in Eq. C.9, so we plot the
probability versus this rescaled parameter. We obtain excellent agreement between this
special case of our model and the Kimura formula for the Moranmodel Eq. (17).

• ǫA+ ǫB = s̃/ f ∗, ǫA > 0, ǫB > 0. This corresponds to a mutualistic situation in which there is
a stable fixed point out in the plane (c∗A > 0, c∗B > 0). Fig. 6b shows the fixation probability
u( f0) versus the initial fractionf0 for stochastic Gillespie simulations withǫA = ǫB = 0.1
where f ∗ = 0.5 andN = 100. For comparison, the formula Eq.(C.9) is shown as the full
drawn line again indicating very good agreement.

• ǫA + ǫB = −s̃/ f ∗, ǫA < 0, ǫB < 0. This choice corresponds to the competitive exclusion
(Frey, 2010) in which there is an unstable fixed point in the plane (c∗A > 0, c∗B > 0) and two
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stable fixed points where one of the two species has gone extinct. Fig. 6c shows Gillespie
simulations for three cases ofǫA < 0, ǫB < 0 and a comparison with the formula Eq. (C.9)
for the different values off ∗ (in order to compare this case we take ˜s< 0 in the formula).

As a further case we consider random initial conditionsnA(0), nB(0) uniformly distributed
in the square [1,N] × [1,N], so that the approach to the linecA + cB ≈ 1 can play a role as
well. The initial fraction is now defined asf0 = nA(0)/[nA(0) + nB(0)]. Fig. 6d show the
corresponding Gillespie simulation results for 200 different initial conditions for three different
fractions f ∗ = 0.25, 0.5, 0.75. The analytic fixation curves according to Eq. (C.9) are also
shown. Although the agreement is excellent, we again expectmodification when departures
from equality of the initial growth ratesµA andµB are allowed.

4. One and two dimensions

Density fluctuations play a more significant role in one and two spatial dimensions, compared
with the well-mixed situations described in the previous section. For example, depending on
initial conditions and genetic drift, different alleles can fix in different regions of space; the
ultimate fate of the system then depends on how these different regions interact, which in turn
depends on the choice of the rates. One of the most striking effects of spatial variation in allele
number and relative proportions is the existence of a regimein which there is a reduction in the
average carrying capacity, i.e. the average concentrationZ is smaller than the value〈Z〉 = 1
calculated from Eqs. (3) with our choice of parameters and byneglecting fluctuations. The
presence of such a regime is illustrated in Fig. (7) in the neutral case as a function of theD
and N. Notice that the latter parameter can be properly interpreted as an average number of
particles per unit length only whenN andD are both large enough. In the opposite regime, as a
consequence of fluctuations, the average number of particles in a unit segment is significantly less
thanN. We quantify this effect by defining an effective average carrying capacity〈Z〉 = 〈n(t)〉/N
wheren(t) is the actual number of particles present at timet per unit length and the average〈. . .〉
is over time.

We find significant deviations from the prediction〈Z〉 = 1 whenN
√

D/µ≪ 1 . Heuristically,
this criterion can be understood as follows. In spatially extended systems, the populations are
mixed by diffusion. The diffusion scale

√

D/µ may be considered as an “effective deme size”,
in the sense that individuals within a distance less than

√

D/µ are mixed very efficiently over
a single generation, while individuals separated by a larger distance are spatially decoupled. In
one dimension, the conditionN

√

D/µ ≫ 1 then corresponds to having many individuals in an
effective deme size. In the opposite limit, this number is smalland fluctuations play a much
more important role. This effect is related to the “strong noise limit” of the stochastic Fisher
equation (see e.g. Doering et al. (2003); Berti et al. (2007); Hallatschek and Korolev (2009)).
We remark that in this regime, the assumptions needed to derive Eq.(3) from the particle model
are violated and significant deviations between the particle simulations and the macroscopic
theory are expected. For this reason, we will restrict our analysis here to the “weak noise” case
in which N

√

D/µ > 1.

4.1. Neutral theory

To study how fixation occurs in space, we now discuss the behavior of the spatial heterozy-
gosity H(x, t) defined as the probability of two individuals at distancex and timet to carry
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Figure 7: Reduction of the carrying capacity in the neutral model in 1d and 2d. (a) Reduction of the total carrying capacity
Z = 〈cA + cB〉 in the (D,N)-plane. The system is one dimensional and we adopted the neutral choice of parameters (see
Section 2). The blue line is the theoretical conditionN

√
D/µ = 1 . (b) Comparison of the carrying capacity reduction in

1d and 2d, as a function of the nondimensional parameterN1/d
√

D/µ whered is the spatial dimension.

different alleles. In the neutral stepping stone model with a fixed population size in each deme,
H(x, t) obeys a closed equation:

∂tH(x, t) = D∇2H − 2µ
N

Hδ(x). (18)

In one dimension, such equation can be solved explicitly:

H(x, t) = H0

















1− 2
N

∫ t

0
dt′

erf
(

t′

4N2D

)

√
8πD(t − t′)

e−
x2

8D(t−t′)+
t′

4N2D

















(19)

whereH0 is the initial heterozygosity, equal to one half if the two variants are well mixed and
equally populated at timet = 0. Eqs. (18) and (19) can be derived directly from the stochastic
Fisher equation (1) withs= 0 (see, e.g., Korolev et al. (2009)).

We define the heterozygosity in our off-lattice particle simulations with growth and competi-
tion from the statistics of interparticle distances. In particular, at a given timet, we compute all
distances between pairs of individals. Upon introducing a bin sizeh, the functionH(r, t) is then
defined as the ratio between the number of pairs carryingdifferentalleles at a separation between
r andr + h, divided by the total number of pairs of all types in the same range of separation. For
simplicity, we always took the bin sizeh equal to the interaction distanceδ.

In the limit N
√

D/µ ≫ 1, the spatial heterozygosity obtained by simulations of the neutral
off-lattice model shows a remarkable agreement with Eq. (19), as shown in Fig. (8). This cor-
respondence arises because the relative fraction of alleleA, f (x, t) = cA/(cA + cB), obeys a very
similar equations as discussed in the mean field case. In Appendix B, we show that the only ef-
fect of density fluctuation is an additional effective advection term in the equation for∂t f , equal
to 2D(∇ logcT ) · ∇ f . The appearance of such term was already found in Vlad et al. (2004) in a
deterministic version of the model described here. In our case, one can show that sincecT obeys
a decoupled equation in the neutral case, such term will not affect the equation for the heterozy-
gosity. Indeed, numerical simulation shows that the average spatial heterozygosity in the model
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reproduces that of the stepping stone model even in the limitof very high diffusivity shown in
Fig. 8, panel (b). Panel (c) shows that similar agreements arise comparing numerical integration
of Eq. (18) with our off-lattice simulations in two dimensions. At variance with one dimension,
where the local heterozygosityH(0, t) decays at long times ast−1/2, in two dimension the decay
is much slower,H(0, t) ∼ 1/ ln(t). Such slow logarithmic decay is confirmed in simulations in
panel (d).
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Figure 8: Heterozygosity in the 1d and 2d neutral case. Behavior of heterozygosity correlation function for the neutral
off-lattice model of growth and competition. (a) 1D simulations at low diffusivity, D = 10−5 and (b) high diffusivity,
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we find excellent agreement with the prediction of formula (19). (c) Neutral heterozygosity in 2d, compared with a
numerical integration of Eq. (18). (d) Behavior of the localheterozygosityH(x = 0, t) as a function of time in 2D,
showing the logarithmic decayH(x = 0, t) ∼ 1/ ln(t).

4.2. Reproductive advantage

In one spatial dimension, an analogue of Kimura’s formula (14) (Crow and Kimura, 1970)
for the fixation probability has been derived from the stochastic Fisher equation by Doering et al.
(2003):

pf ix = 1− exp

[

−sN
∫

dx f(x, t = 0)

]

(20)

where f (x, t = 0) is the initial spatial distribution of the fraction of speciesA. Remarkably, the
one dimensional fixation probability is independent of the spatial diffusion constant. We tested
this prediction in Fig. (9a), left panel, for our model when speciesA enjoys a reproductive advan-
tages. There are again no appreciable differences between the simulations of our more general
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growth model and the theoretical prediction for the stepping stone model, over a wide range of
diffusion constants. This agreement is expected, given the approximate mapping onto a stepping
stone model embodied in Eq. (B.3) of Appendix B. While the result (20) by Doering et al. (2003)
was derived in one dimension, we conjectured that the same formula holds in two dimensions.
Indeed, a straightforward generalization of Eq. (20) predicts well the fixation probability in two
dimensions, as shown in simulations in Fig. (9), right panel.
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Figure 9: Probabilities of fixation in the presence of a reproductive advantage. The two panels show (a) one spatial
dimension and (b) two dimensions, as a function of the selective advantages, for different values of the diffusion constant
D. Our 1d results are compared the results with the prediction of Doering et al. (2003). In 1d, parameters areN = 500 and
the initial fraction of species A isf0 = 0.01, randomly distributed on the unit interval. The 2d simulations were conducted
on a square domain of unit area and the parametersN = 16384 and the initial fraction of species A isf0 = 0.01 were
kept fixed. The solid line is our conjectured generalizationof Eq. (20) to two dimensions.

4.3. Mutualism

We now setµA = µB = µ, but allow variable interspecific competition coefficients can vary
in one and two dimensions. Korolev and Nelson (2011) recently demonstrated how for a mu-
tualistic stepping stone model with fixed deme size in one dimension, there is a region in the
(ǫA, ǫB) parameter space in which (in limit of an infinite system size, L → ∞) fixation never
occurs, as sketched in Fig. 10, panel a). This behavior differs dramatically from the well-mixed
zero dimensional case, for which fixation is inevitable, with a fixation timet∗(ǫA, ǫB,N) given
approximately by Eq. (15).

We fix parameters asµ = 1, D = 0.02 andN = 30. To explore the behavior of our model,
we performed simulations along the paths shown as dashed lines in panel a) of Fig. (10). Panel
b) shows the time evolution of the local heterozygosityH(0, t) along the lineǫA = ǫB. For small
values ofǫA = ǫB > 0, the heterozygosity decays in a similar fashion (roughly as 1/

√
t) as in the

neutral caseǫA = ǫB = 0. For higher values, the local heterozygosity eventually levels off at a
nonzero value, implying that fixation will never occur.

The presence of a mutualistic regime where the system remains mixed forever is even more
evident in Fig. 10, panel c), where we plot along the cuts at constantǫA+ǫB the long-time average
of the fraction of the first allele〈 f 〉 as a function of the differenceǫA − ǫB. Along the cuts that
do not cross the mutualistic region,〈 f 〉 is either 0 or 1 as one of the two alleles always fixes.
A special case arises forǫA = ǫB, where each of the two alleles has a chance of being fixated
equal to its relative abundance in the initial condition, sothat 〈 f 〉 = f0. Conversely,〈 f 〉 has a
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non-trivial behavior along the lineǫA+ǫB = 0.4. Upon varying the parameterρ = ǫA−ǫB, we find
a whole range of values in which fixation does not occur. As discussed in (Korolev and Nelson,
2011), the two lines of critical points shown in (a) are in thedirected percolation universality
class. The behavior of the density close to this critical point is described by a universal exponent,
cA ∼ (ǫA− ǫc)β, where the expected exponent isβ ≈ 0.2765 andǫc is the value ofǫA at the critical
point (see e.g. Odor (2004)). Fig. 10, panel d) confirms the power law behavior close to one
of the critical points on the cutǫA + ǫB = 0.4. Finally, in panels e) and f) we show simulations
on the two dimensional mutualistic model. Mutualism in 2d is computationally challenging and,
to the best of our knowledge, has not been studied systematically in the literature. Although we
did not obtain the full phase diagram, our simulations suggest a scenario similar to the 1d case.
In particular, the heterozygosityH(x = 0, t) along the cutǫA = ǫB displays a transition from a
regime in which it seems to decay logarithmically (as in the 2d neutral version of the model) to
a regime in which fixation does not occur. Furthermore, the cut at ǫA + ǫB = 0.4 shown in panel
f) reveals a directed-percolation-like transition, qualitatively similar to that in panel c).

5. Population genetics in two-dimensional compressible turbulence

A systematic exploration of the effect of hydrodynamic flows on the off-lattice models of
population genetics introduced here would take us far beyond the scope of this already lengthy
paper. However, to illustrate the interesting effects that arise, we now extend our analysis to
the two cases where the competition between populations takes place under the influence of
compressible fluid advection in two-dimensions. As we will show, compressible fluid flows
can dramatically change the carrying capacities and fixation times. For all the simulations in
this section we choose a square simulation domain of size [0, L] × [0, L], the spatial diffusivity
D = 10−4. For simplicity, the two competing populations are neutralwith µA = µB = λAA =

λAB = λBA = λBB = 1.
The two flows that we choose are:

1. Compressible surface flow (CSF):
This chaotic, time-dependent flow is generated from a two-dimensional slice of a three-
dimensional, homogeneous, isotropic flow (see Perlekar et al. (2010, 2012)). A snapshot
of the advecting velocity field is shown on the left side of Fig. 11. Using the projection
method described in Perlekar et al. (2012) we choose the compressibility of the flowκ = 1
where,κ ≡ 〈(∇·u)2〉/〈(∇u)2〉, u ≡ (ux, uy) is the velocity field, and〈(·)〉 indicate the spatio-
temporal averaging. Settingκ to its maximum value of unity maximizes the reduction
in carrying capacity caused by locally compressing the populations to high density, so
that the middle terms on the right side of Eqn. (3) are negative [Pigolotti et al. (2012);
Perlekar et al. (2012)]. The strength of the flow is varied by scaling the velocity field by a
forcing amplitudeF. For all the simulations with this flow we chooseL = 2π.

2. Steady flow (SF):
This time-independent velocity field is chosen to beux(x, y) = F[α sin(2πx/L) + (1 −
α) sin(2πy/L)], uy(x, y) = F[α sin(2πy/L) − (1 − α) sin(2πx/L)] (see Fig. 11 right panel).
The strength of the flow is controlled by again changingF and the compressibilityκ =
α2/[α2 + (1− α2)] is modified by changingα and henceκ ∈ [0, 1]. For all the simulations
with this flow we chooseL = 1. The two species are advected by the flow towards the sink
which is located at the center (−L/2, L/2) of the simulation domain.
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Similar analysis for one-dimensional flows was conducted inPigolotti et al. (2012). The com-
pressible flow on the left of Fig. 11 models photosynthetic organisms that control their buoyancy
to remain near the surface of a turbulent ocean. The flow on theright is designed to determine
the consequences for population genetics of fluid sink at thecenter, with fluid injection at the
four corners. Note the non-zero vorticity in this case.

The competition between species for the two flow conditions described above is shown in
Figs. 12 and 13. Initially the populations are well-mixed atthe steady state carrying capacity
as they would be with ordinary diffusion, birth, and competitive death in absence of advection.
Advection moves the population towards the localized sinksof the flow and enhances the com-
petitive death embodied in theλi j couplings. Indeed, the middle frames of Figs. 12 and 13 show
explicitly the compression that leads to enhanced inter-species and intra-species competition.
Eventually at later times, only one species survives [righthand frames of Figs. 12 and 13]. Al-
though the extreme (103-fold!) reduction in population size shown in Fig. 13 results from the
use of a maximally compressible (κ = 1) turbulent flow, reductions of 80% arise fork = 0.17
[Perlekar et al. (2010)] and even for much smaller value ofκ [Perlekar et al. (2012)].

To quantify how advecting compressible flows affect carrying capacity and the fixation times,
we systematically vary the strength of the flowF. Fig. 14(left) shows that on increasingF,
the carrying capacity drops, due to enhanced confinement andhence competition between the
species. On the other hand, using the steady flow we show that at fixed forcing strength, carrying
capacity is also reduced on increasing the compressibility[see Fig. 14(right)]. The insets to these
figures show the corresponding reduction in the fixation times.

6. Conclusions

The understanding of growth, competition, cooperation anddiffusion in space in individ-
ual based models has been subject of intense study, in contexts as diverse as population genetics
(Barton et al., 2002), ecology (Law et al., 2003; Birch and Young, 2006) and physics (Hernandez-Garcia and Lopez,
2004; Berti et al., 2007; Korolev et al., 2009). A main focus has been to explore the regime in
which discreteness effects are such that individual based simulations differ significatively from
the behavior of macroscopic continuum equations, such as the Fisher equation or its stochastic
variant.

In this paper, we have explored competition and cooperationbetween two different alleles
when the total population size is not constrained. We have deliberately focused on the weak
noise limit by choosing carrying capacities and diffusion constants such that there is a good
agreement between the outcome of the macroscopic Langevin equations and the individual based
simulations.

We have shown that, in certain limits, one can draw an explicit correspondence with stepping
stone-like models in which the total density of individualsis kept fixed at every deme, by study-
ing the relative fraction of one of the two species. In the neutral case, the fluctuating total density
appear in the equation for the relative fraction, but its fluctuations average out in the equation for
mean quantities such as the heterozygosity. The correspondence between stepping stone models
and our generalized off-lattice model with additional fluctuations in the overall density was con-
firmed by individual based simulations. In non-neutral settings, the total density doesnotobey a
closed equation and such exact correspondence can not be drawn. However, we have shown how,
when the departure from neutrality is not severe (smallsor smallǫA andǫB), the corrections due
to density fluctuations can be safely neglected and the predictions of constant-density models are
still reproduced with accuracy. The issue we address here isa more subtle dynamical version
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of justifying the neglect of number fluctuations in the grandcanonical ensemble as compared
to the canonical ensemble in equilibrium statistical mechanics. We conclude that the model we
present here is a natural candidate to study situations in which the total density of individuals can
vary greatly from the background carrying capacity due to external forces, such as turbulence or
compressible fluid flows (Pigolotti et al., 2012).
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Appendix A. Derivation of the macroscopic equations

In this section we present an explicit derivation of the coupled stochastic macroscopic equa-
tions forcA(x, t) andcB(x, t), Eq.(3), from the microscopic rate reactions (2). The formalism we
will follow is that of the chemical master equation, as presented for example by Gardiner (2004),
which in turn may be considered as a spatial generalization of the Kramers-Moyal expansion
(Gardiner, 2004; Risken, 1989).

As discussed in the section 2, we consider interacting individuals in a volume equal toLd in d
dimensions. In particular, competition occurs when individuals are within a small volumeδ (for
details on the implementation of the individual-based dynamics see Perlekar et al. (2011)). We
can then discretize the system in cells of sizeδ and start the derivation from the master equation
governing the time evolution of the probability of the numbers of particles{nA

j , n
B
j } of typeA and

B in each cell, labeled by the indexj. We first define asWA(±1, nA
j , n

B
j ) andWB(±1, nA

j , n
B
j ) the

rates at which the populations of typeA (or B) increase/decrease by one individual in a specific
box, given that the numbers are currentlynA

j andnB
j . The expression for these rates are then:

WA(+1, nA
j , n

B
j ) = µAnA

j

WA(−1, nA
j , n

B
j ) = λ̃AAnA

j (n
A
j − 1)+ λ̃ABnA

j n
B
j

WB(+1, nA
j , n

B
j ) = µAnB

j

WB(−1, nA
j , n

B
j ) = λ̃BAnA

j n
B
j + λ̃BBnB

j (n
B
j − 1). (A.1)

The master equation governing the evolution of the full probability distributionP({nA
j , n

B
j }, t)

for all possible box occupation numbers{nA
j , n

B
j } then reads:

d
dt

P({nA
j , n

B
j }, t) =

∑

j

[

WA(+1, nA
j − 1, nB

j )P(nA
1 , . . . , n

A
j − 1, . . . , nB

1 , . . .) −WA(+1, nA
j , n

B
j )P({nA

j , n
B
j })

]

+
∑

j

[

WA(−1, nA
j + 1, nB

j )P(nA
1 , . . . , n

A
j + 1, . . . , nB

1 , . . .) −WA(−1, nA
j , n

B
j )P({nA

j , n
B
j })

]

+
∑

j

[

WB(+1, nA
j , n

B
j − 1)P(nA

1 , . . . , n
B
1 , . . . , n

B
j − 1, . . .) −WB(+1, nA

j , n
B
j )P({nA

j , n
B
j })

]

+
∑

j

[

WB(−1, nA
j , n

B
j + 1)P(nA

1 , . . . , n
B
1 , . . . , n

B
j + 1, . . .) −WB(−1, nA

j , n
B
j )P({nA

j , n
B
j })

]

+ diffusion terms, (A.2)
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where the diffusion terms allow for the stochastic exchange of particles between neighboring
boxes. Although we did not write them explicitly, they reduce to discrete approximations to
Laplace operator. Indeed, we replace them with Laplacians in the continuous space limit at the
end of the calculation.

The next step in the derivation is to perform a Kramers-Moyalexpansion (Risken, 1989) in
each of the boxes, which leads to

∂tP({nA
j , n

B
j }) =

∑

j

∞
∑

k=1

(−1)k

k!
{∂k

nA
j
[αA

k (nA
j , n

B
j )P({nA

j , n
B
j })] + ∂k

nB
j
[αB

k (nA
j , n

B
j )P({nA

j , n
B
j })]}, (A.3)

with

αA,B
k (nA

j , n
B
j ) =

∫

d∆nA,B
j (∆nA,B

j )kWA,B(∆nA,B
j , n

A
j , n

B
j ), (A.4)

and where the integral over∆n accounts for the possible jump processes (+1 and−1 in our case).
Finally, truncating the Kramers-Moyal expansion up to second order in the derivatives leads to a
Fokker-Planck equation forP{nA

j , n
B
j }. It is convenient to write directly the equivalent but some-

what simpler system of Langevin equations corresponding tothis Fokker-Planck description,
namely:

dnA
j

dt
= nA

j (µA − λ̃AAnA
j − λ̃ABnB

j ) + diffusion+
√

nA
j (µA + λ̃AAnA

j + λ̃ABnB
j )ξ

A
j

dnB
j

dt
= nB

j (µB − λ̃BAnA
j − λ̃BBnB

j ) + diffusion+
√

nB
j (µB + λ̃BAnA

j + λ̃BBnB
j )ξ

B
j . (A.5)

In the above system of equations, theξ’s are delta-correlated unit variance Gaussian pro-
cesses,< ξkj (t)ξ

m
l (t′) >= δ jlδkmδ(t − t′). The multiplicative noise in the equation must be inter-

preted according to the Ito prescription (Gardiner, 2004; Korolev et al., 2009). In principle, the
diffusion terms in (A.2) would contribute to the noise term. However, one can show that this
contribution can be neglected if the size of the cells is sufficiently large (see Gardiner (2004)).

From Eqs.(A.5) one can finally derive Eqs. (3) by:

1. Taking (formally) the limitδ → 0. In such a way the number densities of individuals are
continuous functions of the coordinatex, nA(x, t) andnB(x, t).

2. Defining rescaled, macroscopic rates of binary reactions,

λi j = Nδλ̃i j (A.6)

3. Defining the macroscopic concentrations of individualscA,B(x, t) = nA,B(x, t)/N.

The convenience of introducing the macroscopic binary reaction ratesλi j in step (2) is that
the microscopic interaction radiusδ does not appear in the macroscopic system of equations (3).
At the same time, we introduced a parameterN = λi j/(δλ̃i j ) that, as clear from step (3) in the
above procedure, sets the typical number density of particles corresponding to a macroscopic
concentrationc(x, t) = 1. Such parameter does not appear in the deterministic driftterms of the
equation but only in the noise terms, whose amplitude vanishes forN → ∞. It is worthwhile
remarking that, while we followed here the Kramers-Moyal expansion procedure, in the Van
Kampen formalism the parameterN−1 is the relevant expansion parameter which is assumed to
be small (Risken, 1989; Gardiner, 2004).
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We remark that through the paper we presented only results ofthe particle models, corre-
sponding to given parameter choices in the macroscopic equations (3). Equation (A.6) can be
seen as defining the mapping between the parameters used in the particle simulations (the inter-
action domainδ and the microscopic binary ratesλ̃i j ’s) and those appearing in the macroscopic
description (N and the set ofλi j ’s) The same relation can be used for the reverse task, i.e. finding
microscopic parametersδ andλ̃i j ’s corresponding to givenN andλi j ’s. Clearly this mapping is
not univoquely determined, but has one degree of freedom. Assketched in Sec. (2), we fixed this
degree of freedom in two different ways in the well-mixed version of the model and in thed > 0,
spatially explicit simulations. In particular, ind = 0 we choseδ = 1, so that the microscopic
binary reaction rates areN times smaller than the macroscopic ones,λ̃i j = λi j /N. In this case, it
is crucial to set the system sizeL = 1 so that all particles interact with all other particles. Instead,
in d > 0 we chose the interaction domainδ = 1/N, so that the microscopic and macroscopic
reaction rates are identical,λ̃i j = λi j . Further details on the simulation schemes can be found in
Perlekar et al. (2011).

We conclude this Appendix by noting that the continuous space limit is a formal one, and
cannot be performed in a rigorous way. One of several subtleties is that neglect of the diffusive
contribution to the noise variance requires a finite value ofδ, so that the limit of vanishingly
small interaction range cannot be taken in a strict sense. Thus, Eq. (A.2) should be regarded as
a continuum shorthand notation: In practice, we always simulate equations such as Eq. (A.5)
on a lattice of finite size, and require a smoothly varying total density of particles. When this
assumption is invalid, the macroscopic description can break down, as briefly discussed in the
beginning of section (4) for the problem of the reduction in the total number of particles ford = 1
andd = 2.

Appendix B. Appendix: equations for the relative fraction of one species

The correspondence between the growth model presented hereand the stepping stone model
with Fisher-Wright or Moran dynamics, or the equivalent stochastic Fisher-Kolmogorov-Petrovsky-
Piscounov equation (Fisher, 1937; Kolmogorov et al., 1937)can be illuminated by constructing
the dynamical equation for the relative fraction of speciesA, f = cA/cT with cT = cA + cB. A
dynamical equation forf can be derived with help of the Ito calculus: upon writing thesystem
of equation (3) as:

d
dt

cA(x, t) = αA(cA, cB) + σA(cA, cB)ξ(x, t)

d
dt

cB(x, t) = αB(cA, cB) + σB(cA, cB)ξ′(x, t) (B.1)

where the diffusive Laplacian terms are included intoαA, αB. The equation for theA-fraction f
then reads

d
dt

f = αA∂A f + αB∂B f +
√

σ2
A(∂A f )2 + σ2

B(∂B f )2ξ +

+
σ2

A

2
∂AA f +

σ2
B

2
∂BB f , (B.2)

where we used the abbreviated notation∂A ≡ ∂cA, ∂AA ≡ ∂2
cA

and so on. Inserting the complete
set of equations 3 into (B.2) leads to a lengthy expression for the dynamics off . However, with
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the choice of parameters we made to discuss a reproductive advantage (this reduces to the neutral
case fors= 0), Eq.(B.2) simplifies to

∂

∂t
f = D∇2 f + 2D∇(logcT) · ∇ f +

+ µs f(1− f ) +
µs f
cTN

( f − 1)+

√

µ f (1− f )
1+ cT

NcT
+
µs f
NcT

(1− f )2ξ. (B.3)

Upon neglecting small contributions of orders/N ≪ 1 in the last two terms and neglecting
fluctuations in the total density (i.e. imposingcT = 1), we recover exactly the equation (1)
governing the macroscopic dynamics of the stepping stone model.

Repeating the calculation in the case of mutualism yields:

∂

∂t
f = D∇2 f + 2D∇(logcT) · ∇ f + µ f (1− f )[ǫA − (ǫA + ǫB) f ] +

+
µ f ( f − 1)

N
[ǫA( f − 1)+ ǫB f ] +

√

µ f (1− f )
[(

1+cT
cT

)

− ǫA(1− f )2 − ǫB f 2
]

N
ξ (B.4)

Upon neglecting, similar to the case of reproductive advantage, terms orderǫA,B/N, and again
neglecting fluctuations away from the linecT(x, t) = cA(x, t) + cB(x, t) = 1, we recover the
continuum limit of the mutualistic stepping stone model treated by Korolev and Nelson (2011),
namely

∂

∂t
f = D∇2 f + s0 f (1− f )( f ∗ − f ) +

√

2µ f (1− f )
N

ξ(x, t), (B.5)

wheres0 = µ(ǫA + ǫB) and f ∗ = ǫA/(ǫA + ǫB).

Appendix C. Appendix: Fixation times for the mutualistic model in the well-mixed case

To estimate the average fixation time for the mutualistic model in the well-mixed limit, we
start from Eq. B.4. Upon neglecting terms orderǫA/N, ǫB/N and also neglecting density fluctua-
tions by imposingcT = cA + cB = 1, we obtain:

d
dt

f ≈ µ f (1− f )[ǫA − (ǫA + ǫB) f ] +

√

2µ f (1− f )
N

ξ. (C.1)

The dynamics of such equation will reach one of the two absorbing states atf = 0 or f = 1 for
long enough times. However, these times can be very long whenN is large: a time-independent
metastable probability distribution exists before the absorbing states are reached, which can be
written using potential methods (Gardiner, 2004) as

P( f ) ∝ e−V( f ) (C.2)

where the potentialV is given by

V( f ) = −N f

[

ǫA −
(ǫA + ǫB)

2
f

]

+ ln[ f (1− f )] (C.3)
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where the first term is analogous to a potential energy and thesecond resembles an entropy. In
the largeN limit, the potential has a minimum atf c ≈ ǫA/(ǫA + ǫB) and two maxima, one at
f − ≈ 1/(NǫA) and one atf + ≈ 1− 1/(NǫB). By evaluating the potential at these points one can
estimate the lifetime of the metastable state from the height of the two potential barriers. To the
leading order inN, the smallest barrier is given by:

∆V =
N
2

min(ǫ2A, ǫ
2
B)

ǫA + ǫB
. (C.4)

Finally, we assume that fixation always occurs via the smallest barrier. With this assumption,
the time needed to escape the potential minimum to one of the absorbing state can be simply
estimated from Kramer’s escape rate theory ast∗ ∼ exp(∆V), which leads to Eq.(15).

We now discuss the fixation probability in zero dimensions. The Kolmogorov backward
equation corresponding to the stochastic differential equation (C.1), when interpreted using the
Ito calculus, reads:

∂u(p, t)
∂t

=
1
N

p(1− p)
∂2

∂p2
u(p, t) + s̃p(1− p)( f ∗ − p)

∂

∂p
u(p, t), (C.5)

whereu(p, t) is the probability that species A has fixed at timet > 0 given that it was present with
frequencyp at timet = 0. We have setf ∗ = ǫA/(ǫA + ǫB), and defined themutualisticadvantage
s̃= µ(ǫA + ǫB).

Note that Eq. C.5 includes the original Kimura problem of twonon-interacting species as a
special case, in the limitf ∗ → ∞, s̃→ 0 with the selective advantage given by the fixed product,
s ≡ f ∗ s̃ ≡ µǫA. We now define the long time fixation probability for the initial conditionp = f0
as

lim
t→∞

u( f0, t) ≡ u( f0) (C.6)

Upon assuming a steady state arises at long times, we have from Eq. (C.5)

d
dp

u′(p) = Ns( f ∗ − p)u′(p) (C.7)

which leads to
u′(p) = C e

1
2 Ns( f ∗−p)2

(C.8)

With boundary conditionsu(0) = 0, u(1) = 1, we integrate once more to obtain the fixation
probability (Korolev and Nelson, 2011)

u( f0) =

∫ f0
0

e
1
2 Ns( f ∗−p)2

dp
∫ 1

0
e

1
2 Ns( f ∗−p)2

dp
, (C.9)

a closed form expression in terms of the parametersf0, f ∗,N ands. It is straightforward to show
that in the limit f ∗ → 0, s→ 0 with s̃ ≡ f ∗s fixed (two noninteracting species with a selective
advantage ˜s) we recover Kimura’s famous formula for the fixation probability, Eq. (17).
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Figure 10: Mutualism in 1d and 2d. a) Phase diagram of the mutualistic model in 1d. The mutualistic region, where
global fixation never occurs in an infinite system, is coloredin red. Dashed lines denote the cuts relevant to data in
the other panels. b) Behavior of the local heterozygosityH(0, t) along the cutǫA = ǫB. A nonzero long time asymptote
implies that fixation never occurs. c) Average concentration of alleleA,< cA >, along three cuts such thatǫA+ǫB = const..
WhenǫA + ǫB is sufficiently large and positive,〈 f 〉 varies smoothly between 0 and 1 when traversing the red region in
(a). For bothǫA + ǫB = 0 andǫA + ǫB negative, there is an abrupt jump in〈 f 〉 from 0 to 1 whenǫA = ǫB. In this sense,
the dashed diagonal line below the cusp in (a) is like a first order phase transition. In all figures, parameters are:µ = 1,
D = 0.02, N = 30 andL = 2000 so that on average there are 6· 104 individuals in the system. d) Logarithmic plot of
the density ofA close to the critical point. A power law with the expected directed percolation exponent,f (x) ∝ xβ ,
β ≈ 0.2765 is shown for comparison. e) Behavior of the local heterozygosity H(0, t) in 2d along the lineǫA = ǫB. A
phenomenology similar to the 1d case of panel b) is observed. f) Transition along the diagonal cut ǫA + ǫB = 0.4 in 2d,
again showing a similar behavior to the 1d case shown in panel c).
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Figure 11: (Left) A representative snapshot of the time-dependent compressible surface flow (CSF) field used for ad-
vecting species in our two-dimensional simulations. (Right) Vector field visualization of the steady flow (SF) used for
advecting species in our simulations of a simple time-independent steady flow withκ = 0.0027.

Figure 12: Competition between two neutral species (shown in red and green) in a turbulent compressible flow with
κ = 1 andF = 1. At time t = 0 (left) approximately 10000 organisms are randomly distributed over the entire domain
at the steady state carrying capacity in absence of flow. Bothspecies are then collapsed by advection onto filamentous
structures leading to (time-dependent) sinks and saddle points, dynamics which compactifies the population into regions
where competition takes place. This collapse is highlighted in the middle plot which is chosen at a later timet = 1
(middle). At much later timest = 25 (right) fixation occurs and only one of the species survive. The populations size
has stabilized at 6 organisms, a reduction from the initial carrying capacity by a factor 103. Although the reduction in the
population size is most extreme forκ = 1, significant reductions occur for even small values ofκ [Perlekar et al. (2012)].
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Figure 13: Competition between two neutral species (shown in red and green) in the steady flow withκ = 0.0027. At
time t = 0 (left), the species are randomly distributed over the entire domain again at the equilibrium carrying capacity
possible in absence of flow. Species are rotated and collapsed by the advecting flow towards the origin where competition
takes place. This progression is highlighted in the middle plot which is chosen at a later timet = 17 (middle). At much
later timest = 41 (right) fixation occurs and only one of the species survive.
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Figure 14: (Left) Carrying capacity for the turbulent compressible flow for varying forcing strength withκ = 1. Z drops
with increasing forcing strength. (Right) Carrying capacity for the steady flow at varying compressibility levels. Forvery
small compressibility, carrying capacity is close to the one in absence of flow and then drops. For the extreme case of
κ = 1, carrying capacity is reduced by a factor of 103, similar to the reduction found whenκ = 1 for the compressible
surface flow. In both cases, the inset reveals the drop in the fixation times for varying forcing atκ = 1.
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