We study an individual based model describing competition in space between
two different alleles. Although the model is similar in spirit to classic
models of spatial population genetics such as the stepping stone model, here
however space is continuous and the total density of competing individuals
fluctuates due to demographic stochasticity. By means of analytics and
numerical simulations, we study the behavior of fixation probabilities,
fixation times, and heterozygosity, in a neutral setting and in cases where the
two species can compete or cooperate. By concluding with examples in which
individuals are transported by fluid flows, we argue that this model is a
natural choice to describe competition in marine environments.Comment: 29 pages, 14 figures; revised version including a section with
results in the presence of fluid flow