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Phase Identification and Internal Stress Analysis of Steamside
Oxides on Plant Exposed Superheater Tubes

KAREN PANTLEON and MELANIE MONTGOMERY

During long-term, high-temperature exposure of superheater tubes in thermal power plants,
various oxides are formed on the inner side (steamside) of the tubes, and oxide spallation is a
serious problem for the power plant industry. Most often, oxidation in a steam atmosphere is
investigated in laboratory experiments just mimicking the actual conditions in the power plant
for simplified samples. On real plant-exposed superheater tubes, the steamside oxides are solely
investigated microscopically. The feasibility of X-ray diffraction for the characterization of
steamside oxidation on real plant-exposed superheater tubes was proven in the current work;
the challenges for depth-resolved phase analysis and phase-specific residual stress analysis at the
inner side of the tubes with concave surface curvature are discussed. Essential differences be-
tween the steamside oxides formed on two different steels typically applied for superheaters,
ferritic-martensitic X20CrMoV12-1 and lean austenitic stainless steel TP347H, respectively, are
revealed by X-ray diffraction.

DOI: 10.1007/s11661-011-0874-x
� The Minerals, Metals & Materials Society and ASM International 2011

I. INTRODUCTION

THE long-term service of superheater tubes in
thermal power plants results in high-temperature fireside
corrosion of the outer surface and steamside oxidation
of the inner surface of the tubes. Often, steamside oxides
consist of both oxide layers formed by outward growth
on top of the original steel surface (outer oxide) and an
oxidation zone beneath the steel surface (inner oxide
zone). Understanding the mechanisms of oxide forma-
tion and scale growth in steam atmospheres at high
temperatures and high internal pressures is of both
academic and economic interest. A serious concern of
the power plant industry is spallation of the steamside
oxide scale[1–3] because it can provoke unforeseeable
shutdowns and decrease the lifetime of components in
the plants. Oxide flakes originating from the spallation
of steamside oxides result in blockage of loops, which
can cause insufficient steam flow and, finally, failure by
overheating of the tubes. Furthermore, exfoliated oxide
flakes get carried away with the steam and can cause
erosion of downstream components like turbine blades.
To monitor the formation of steamside oxides in power
plants, parts of the superheater tubes are replaced
during regular inspections, and the morphology of the
oxide scale on these service-exposed tubes is investi-
gated. To this end, almost exclusively light and electron
microscopy studies supplemented by local analysis of

the chemical composition are usually carried out on the
plant exposed components. Such microscopy-based
investigations reveal important information on the
thickness of the oxide scale, on the distribution of
(multi)layers or localized precipitations, and on the
microstructure of the steel beneath the oxide scale.[4–6]

However, a conclusive interpretation of the microscopic
observations including thorough identification of vari-
ous phases based on contrast or morphological differ-
ences in micrographs either requires long-standing
experience or additional information from well-defined
laboratory experiments. Systematic laboratory studies
on the effect of different steam conditions (e.g., temper-
ature and heat flux) on the formation of oxide phases
and the kinetics of scale growth contributed consider-
ably to understanding steamside oxidation during the
past decades,[7] in particular because dedicated charac-
terization tools (like X-ray diffraction [XRD]) supple-
menting microscopic investigations can often be applied
straightforwardly on the simple geometries of labora-
tory samples such as metallic coupons, whereas this is
less feasible on the real exposed components. Conclu-
sions, however, solely based on laboratory studies are
questionable[8,9] and the difficulty of mimicking real
service conditions in the laboratory becomes particu-
larly obvious in the present case of high temperature
exposure in the power plant. The following uncertainties
and limitations for the comparability of laboratory and
plant exposure are relevant for the problem of oxide
spallation after high-temperature corrosion.

A. Exposure Conditions

The actual temperature, which the superheaters expe-
rience in the plant during service, is usually unknown. It
can be considerably different at various positions on the
tube in longitudinal and circumferential direction, and it

KAREN PANTLEON, Associate Professor, is with the Department
of Mechanical Engineering, Technical University of Denmark,
Kemitorvet, Building 204, DK-2800 Kgs. Lyngby, Denmark. Contact
e-mail: kapa@mek.dtu.dk MELANIE MONTGOMERY, Senior
Scientist, is with the Department of Mechanical Engineering, Technical
University of Denmark, and is also with Vattenfall A/S, Thermal
Engineering Denmark, Stoeberigade 14, 2450 Copenhagen, Denmark.

Manuscript submitted June 21, 2011.
Article published online September 10, 2011

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 43A, MAY 2012—1477



may increase gradually over several years as a conse-
quence of oxide scale thickening.[10,11] Often, the steel
temperature during service exposure is estimated only
afterward based on the measured thickness of grown
oxide scales, but apart from the uncertain assumptions
on the kinetics of scale formation, this cannot account
for already occurred spallation. Calculations of the
temperature at the steel surface based on measurements
of the steam temperature at the inlet and outlet of the
loops are also difficult because additional information
on the pressure, heat flux, and flow rate of the steam, as
well as the influence of already formed oxide phases,
needs to be considered[11,12]; the corresponding phases,
however, are often unknown. Enormous temperature
gradients were calculated for plant exposed tubes[1,13] as
a consequence of huge temperature differences between
the combustion gas and the steam.

In many cases, spallation is observed only after long-
term exposure over several years (several thousand
hours of operation[14]), which is not feasible for expo-
sure experiments in the laboratory. Extrapolation
toward industrial long-term exposure may fail because
the oxidation mechanism and, hence, the kinetics of
scale growth, can change with time.[15]

Most oxide scale failure occurs as a consequence of
temperature changes because of regular or unexpected
shutdowns during the lifetime of superheaters, which is a
key factor for the evolution of stresses in the oxide scale.
In addition to temperature variations, boiler shutdowns
also cause changes in steam pressure in the superheater
tubes.[12] Although thermal cycling and pressure fluctu-
ations, in principle, can be considered also in laboratory
experiments, the real exposure conditions can hardly be
mimicked.

B. Sample Conditions

For the plant exposed tubes, steamside oxidation on
the inner side of the tubes, i.e., the concave surface, is of
interest. Most laboratory studies, however, fully neglect
the influence of the surface curvature by using flat metal
sheets in laboratory furnace experiments (sample cur-
vature is often only considered in a theoretical manner).
The sample geometry, however, considerably influences
the formation and, consequently, the magnitude and
sign of growth stresses and thermal stresses in the oxide
scale.[1,12,13,16–18] As a consequence of its effect on stress
formation, the surface curvature of the sample also
affects the kinetics and the morphology of the growing
oxide.[19–21]

In addition to the different stress states in planar vs
nonplanar samples, the surface topography and the

microstructure of laboratory samples is usually different
from real superheater tubes. The flat laboratory samples
may be deformed by machining (grinding and/or pol-
ishing), and the resulting lattice defects enhance diffu-
sion in the surface near region strongly. As a result, the
formation of protective oxide phases (like Cr2O3) is
considerably favored for the mechanically prepared
laboratory samples compared with real superheater
tubes and, consequently, the resistance of laboratory
samples to high-temperature oxidation is often much
better compared with real service exposure. Further-
more, for laboratory samples, often the chemical com-
position is simplified also, and pure iron or model alloys
with selected alloying elements of well-defined concen-
trations are used for many laboratory experiments.
The current study reports on steamside oxidation on

real service exposed superheater tubes. Oxide scale
formation on the steamside of superheater tubes is
investigated by means of X-ray diffraction, and the
differences with respect to phase composition and phase-
dependent residual stresses are discussed for two typical
boiler steels.

II. EXPERIMENTAL

A. Plant-Exposed Superheater Tubes

Superheater tubes exposed in Danish thermal power
plants were investigated in the current work. They were
replaced during regular service inspection after long-
term exposure before failure had occurred. The tubes
represent two typical types of superheaters, a ferritic-
martensitic steel X20CrMoV12-1 and a lean austenitic
stainless steel TP347H (Table I). The steel TP347H was
available in two different grades, a fine-grained version
(ASTM number 8, i.e., grain size of approximately
25 lm) and a coarse-grained version (ASTM number
5-6 corresponds to 50 to 75-lm large grains). Table II
summarizes the exposure conditions and dimensions of
the plant-exposed superheater tubes.
For experimental characterization of the steamside

oxides, ring samples were cut from the long superheater
tubes received from the power plants.

B. X-Ray Diffraction

XRD analysis was performed applying a diffractom-
eter D8 Discover (Bruker AXS, Karlsruhe, Germany).
An Eulerian cradle enabled sample rotations by the
azimuth angle u and sample tilts by the pole angle w.
Grazing incidence geometry applying a thin film attach-
ment allowed measurements with limited penetration

Table I. Chemical Composition of Plant Exposed Superheater Tubes

Main Alloying Elements (wt pct)

C Cr Ni Mn Mo V Nb Si

X20CrMoV12-1 0.17–0.23 10.0–12.5 0.3–0.8 <1.0 0.8–1.2 0.25–0.35 — <0.5
TP347H 0.04–0.10 17.0–20.0 9.0–13.0 <2.0 — — 0.80–1.0 <1.0
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depths of the X-ray beam and, furthermore, the advan-
tage of constant penetration depth over the whole range
of measured diffraction angles. Systematic combinations
of the diffraction technique (conventional vs grazing
incidence applying different incidence angles) with
different applied wavelengths (Cr-Ka and Co-Ka) of
the X-rays allowed variations of the X-ray information
depths as shown in Table III. As the thickness of the
oxide scales (which, for the present samples, is up to
250 lm) exceeded the maximum X-ray information
depth, the nondestructive measurements were combined
with stepwise removal of the surface. A suitable method
for removing the oxide scale on the concave surfaces of
the samples for depth-resolved diffraction analysis has
to meet the following demands: (1) During each removal
step, a few tenths of micrometers should be removed
homogeneously in depth; (2) surface roughness should
be minimal, in particular, for grazing incidence XRD;
(3) the removed materials should be applicable as
reference material for correcting measurements on the
real samples and possible alignment errors. Various
removal techniques were tested. By chemical removal
and applying HNO3, only a selective attack of the
sample was observed, and consequently, inhomoge-
neous layer thicknesses were removed in each step.
Furthermore, by chemical dissolution, the removed
material was lost in the liquid reagent and could not
be used for XRD analysis. The usefulness of mechanical
grinding was found to depend strongly on the grit size of
the grinding paper: The best results were obtained with
fine paper of grit 4000, whereas for larger grit sizes,
increased amounts of SiC particles originating from the
grinding paper were mixed with the removed oxide

particles and considerably hindered XRD phase analysis
on the powders. In particular during the first removal
steps, the outer—surface near—oxide layers on the
steamside of the tubes were highly susceptible to
spallation and allowed straightforward layer-wise
removal with well-defined homogeneous thicknesses.
The mechanically removed thicknesses were calculated
from the corresponding weight differences of the sam-
ples assuming precise knowledge of the sample area and
uniform removal along that area.
The concave surface of the tubes, i.e., the steamsides,

were subjected to phase analysis and lattice strain
measurements. To access the concave surfaces (the inner
side of the tubes) by XRD, ring samples were cut from
the tubes (see also the next section).
For a phase analysis, the ring samples were cut into

segments, which improved the accessibility of the
concave surface during the measurement considerably;
however, cutting of the segments affected the state of
internal stresses drastically, which, however, did not
hinder phase identification. A phase analysis was per-
formed first on the original surface and successively on
the surfaces after each removal step applying both
conventional H-2H measurements and grazing incidence
measurements with various incidence angles of the
X-ray beam. Because the thickness of removed layers
was always larger than the X-ray penetration depth, an
absorption correction of the measured intensities was
not applied, and measurements after each removal step
are assigned to the corresponding penetration depth.
The removed material obtained after each removal step
was used in form of powders for measurements of the
stress-free reference state.

Table II. Geometry (Inner Diameter, dinner, and Wall Thickness, Dwall) and Exposure Conditions (Steam Temperature Tsteam,

Exposure Time T, Number of Shutdowns N Per Year) for the Service-Exposed Superheater Tubes

Steel and Sample Name

Geometry Exposure

dinner (mm) Dwall (mm) t (h) Tsteam (K) psteam (bar) N Comments

X20CrMoV12-1
X20-1 18.2 6.7 31000 833 255 5–15 turbine starts
X20-2 18.8 7.6 16000 833 255 5–15 turbine starts
TP347H
fine-grained: TP-FG 21.7 7.8 30000 843 250 1 boiler start
coarse-grained: TP-CG-1 21.7 5.9 5000 857 91 200 boiler starts no heat flux
coarse-grained: TP-CG-2 21.7 4.6 5000 869 91 200 boiler starts

Table III. Penetration Depth of the X-Ray Beam as a Function of the Wavelengths (Cr-Ka and Co-Ka) and the Diffraction
Geometry (BB – Conventional Bragg-Brentano-Diffraction, GI – Grazing Incidence Diffraction with Incidence angles c).

Values Represent Averages for the Oxides Hematite and Magnetite Assuming Similar Absorption of X-rays by Both Phases

Cr-Ka (36 £ deg 2H £ 160) Co-Ka (20 £ deg 2H £ 120)

BB 3.2 … 10.3 lm 3.6 … 18.1 lm
GI
c 5 deg 1.6 lm 2.7 … 3.3 lm
10 deg 2.6 lm 3.6 … 6.1 lm
15 deg 3.1 … 3.7 lm 2.7 … 8.5 lm
20 deg 3.2 … 4.7 lm 10.6 lm (120 deg 2H)

GI, grazing incidence diffraction with incidence angles c.
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Stress analysis on the concave surfaces on the inner
side of the ring samples is tricky. Cutting a ring from a
tube has to meet two demands: On the one hand, the
width of the ring sample should be as large as possible to
minimize the effect of cutting; on the other hand, the
ring should be as thin as possible, to avoid shading
effects of the X-ray beam on its way to the inner surface
of the ring, which is a problem in particular for high-
diffraction angles as required for accurate stress mea-
surements. A compromise between the two contradicting
demands was applied, and the resulting widths of the
rings amounted to approximately 10 mm. Shading
effects according to the ring shape of the sample
restricted the possible sample rotation around its surface
normal by the azimuth angle u and the sample tilt by the
pole angle w being the angle between the normal of the
sample and the lattice plane normal. Hence, complete
XRD stress determination (tensor analysis) is not
possible for measurements at the inner side of the rings.
XRD stress analysis is based on the experimental
determination of lattice strain e/;w

hkl by recording the
angular shift of a given reflection as a function of
specimen tilt w and rotation u and the measured lattice
strain is related to the biaxial stress state consisting of r1
and r2 according to[22]

e/;w
hkl ¼s1 r1 þ r2ð Þ

þ 1

2
s2 r1 cos

2 / sin2 wþ r2 sin
2 / sin2 w

� � ½1�

The stress r1 represents the circumferential stress, which
was obtained from measurements at u = 0 deg with
0 £ w £ 45 deg. Because of the ring shape of the samples
and the need to measure on its concave (inner) side, the
measurements at u = 90 deg required tilting the sample
by at least 25 deg to avoid shading; thus, the stress r2

was obtained at u = 90 deg with 25 £ w £ 55 deg. For
stress calculation of the r2 components, additionally, the
w = 0 data measured at u = 0 deg were included
because the values in the untilted sample state must be
independent of the sample rotation. The stress r2

corresponds to the stress component in the longitudinal
direction of the ring, but because the ring was cut from
the tube, it does not represent the longitudinal stress of
the entire tube. Although a radial stress component r3

can be expected for the current samples because of their
surface curvature,[23] its maximum value lies at the
interface between the outer oxide and the steel and is not
accessible from the XRD measurements because of the
rather low penetration depths of the X-rays. Also,
because of stress relaxation at the surface, the radial
stress component can be neglected here. Furthermore,
Eq. [1] assumes the absence of shear stresses, which is a
reasonable assumption for the current ring shape of the
samples.

The X-ray elastic constants (XECs) s1 and 1
2s2 were

calculated for the magnetite phase according to the Hill-
model applying the single elastic constants of the (731)
lattice planes of magnetite[24] s7311 = –1.15 10�6 MPa�1

and 1
2 s

731
2 = 5.33 10�6 MPa�1. In the absence of avail-

able data for the hematite phase, macroscopic elastic
constants[23] were used for calculating the XEC values of

hematite: s1 = –0.90 10�6 MPa�1 and 1
2s2 = 5.66 10�6

MPa�1.
A special sample holder was manufactured for the

precise mounting of the ring samples within the diffrac-
tometer. Phase-specific stresses were determined: For
hematite, measurements corresponding to the 226
reflection were performed, and for magnetite, the 731
reflection was measured. Both diffraction line profiles
were recorded simultaneously from one and the same
measurement covering both diffraction angles (H-226:
108.33 deg 2H, M-731:109.81 deg 2H). The measured
diffraction line profiles were evaluated by pseudoVoigt
fitting.

III. RESULTS AND DISCUSSION

A. Phase Formation on the Steamside of Superheater
Tubes

X-ray diffractograms measured on the concave
(steamside) surfaces of both the ferritic-martensitic
X20CrMoV12-1 and the austenitic TP347H superheater
tubes are shown in Figure 1. Apparently, the Bragg
angles of measured line profiles correspond well with the
theoretical values expected for the iron oxides Fe2O3

(hematite) and Fe3O4 (magnetite); see Figure 1. How-
ever, a detailed evaluation of the line profiles and
measurements after successive film removal reveals
considerable differences between the two types of steels,
as discussed in the next section.

1. Ferritic-martensitic superheater tubes
For the two different X20CrMoV12-1 superheater

tubes in this study, an XRD phase analysis revealed

Fig. 1—X-ray diffractograms measured on the concave surface
(steamside) of plant exposed superheater tubes: samples X20-1 (gray)
and TP-CG-1(black); magnification of a selected range of diffraction
angles is shown in the upper right corner. The theoretical positions
of Bragg angles corresponding to hematite (open triangles) and mag-
netite (closed triangles) are marked (JCPDS card numbers: 86-0550
and 82-1533, respectively); all additional peaks of low intensity also
belong to these phases, but for the sake of clarity, they are not
marked by symbols.
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similar results, and measurements at various locations
on the ring samples indicated the presence of the same
phases in all cases; only slight thickness variations were
observed for the various phases as indicated by changes
of the diffraction intensities of the various peaks. A
depth-dependent phase analysis on the concave side of
the X20CrMoV12-1 sample (for the sake of clarity,
Figure 2 shows only a selected range of measured
diffraction angles) revealed that the steamside oxide on
the superheater tube consists of hematite only in the
near surface region.

Already after the second removal the intensities
measured for hematite reflections decrease drastically
and at about 41 lm beneath the surface, only weak
intensities indicating a lower fraction of hematite were
measured. At greater depths, where hematite was
absent, only diffraction lines apparently corresponding
to magnetite were detected. A detailed evaluation of
individual peaks, however, revealed considerable
changes with depth. In contrast to the fully symmetrical
line profiles measured on the surface and after the first
removal step, asymmetric peaks were recorded after
subsequent removal (Figure 3 shows an example). In
general, asymmetric peaks can originate from differ-
ences in the chemical composition and/or stress gradi-
ents perpendicular to the surface. Two observations
seem to be important for understanding the line profile
asymmetry of the current sample. At exactly the depth
where asymmetric broadening of line profiles was
measured for the first time (after the third removal step,
104 lm), different characteristics of the oxide layer
during removal were observed. Whereas removed
powder, directly underneath the hematite layer,
appeared black and initially was easy to remove
(indicating weak adherence to the surface), it was more

difficult to continue oxide removal, and a greasy black
powder was obtained. A chemical element analysis
applying energy dispersive spectroscopy (EDS) on the
surface in the scanning electron microscope after that
removal revealed approximately 6 wt pct chromium on
the greasy surface, whereas chromium was absent on the
overlying surfaces with loosely adherent oxide. The
magnetite phase can contain chromium in solid solution,
resulting in the spinel (Fe,Cr)3O4 as a compact layer
with improved adhesion.[25] The lattice parameter of the
chromium-containing spinel does not obey Vegard’s
law, but it shows a sigmoid dependence on composi-
tion[26–28] with increased lattice parameters in the range
of 6 to 9 wt pct chromium and, hence, correspondingly
decreased Bragg angles compared with pure magnetite.
Alternatively, solid solution of manganese in the spinel
also would shift reflections toward lower diffraction
angles,[27] but only a slight increase of the manganese
concentration at the interface between the outer and the
inner oxide was measured by EDS. The asymmetric
diffraction line profiles were evaluated based on the
assumption that each profile measured as a function of
depth reflects two different face-centered cubic phases
(indeed, two distinct peaks were visible in each profile),
and the evolution of the lattice parameters was esti-
mated for both phases from their corresponding Bragg
angles. The results indicate that the outer oxide layer
contains pure magnetite, whereas the inner layer
beneath the original surface of X20CrMoV12-1 consists
of a mixture of magnetite and solid solutions with
gradually increasing lattice parameters (Figure 4).
Although the current assumption of two individual
phases and corresponding overlap of the line profiles is
not fully correct, because in the presence of chemical
gradients each diffraction line profile reflects many

Fig. 2—X-ray diffractograms measured on the concave surface (steamside) after successive oxide removal for the X20CrMoV12-1 superheater
tube (sample X20-1). The phases of hematite (dotted arrow), magnetite (black arrow), and a-iron (gray dashed arrow) are marked, and the dis-
tances from the original surface corresponding to the various removal steps are indicated.
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layers of isostructural oxides with slightly different
chemical composition in each layer, which, however,
cannot be resolved by XRD, the obtained lattice
parameters agree well with the expected values for
chromium and manganese-containing spinel.[27] The
coexistence of both the pure magnetite and the spinel
with a solid solution of steel-alloying elements (Figure 4)
suggests that the solid-solution spinel represents local
regions in a magnetite matrix beneath the original steel
surface, which agrees with microscopic observa-
tions.[15,29] With subsequent film removal, diffraction
lines corresponding to oxide phases become weaker, and
simultaneously, an increasing intensity originating from
the a-iron phase of X20CrMoV12-1 was measured. At
approximately a 260-lm distance from the surface,
additionally, Cr23C6 carbides were detected (Figure 5).
Although carbides of the M23C6 type are typical for the
steel X20CrMoV12-1 and they should be present

throughout the whole sample, they were detected neither
in the oxide scale nor in the bulk away from the oxidized
surfaces of the current samples. It has been shown
previously that coarsening of the carbides occurs during
long-term annealing[30,31] and that oxidation of the
chromium-rich carbides by the moving oxidation front
can involve their embedding into the inner oxide
layer.[15] The detection of carbides in the current study
only directly beneath the inner oxide layer suggests a
local increase of their volume fraction either because of
pronounced coarsening or preferential carbide forma-
tion because of increased chromium and carbon con-
centrations at the interface between the inner oxide layer
and the alloy.

2. Austenitic superheater tubes
Clear phase identification on the steamside surface of

the austenitic steel TP347H is less straightforward
compared with the X20CrMoV12-1 steel because stron-
ger overlap and more pronounced asymmetries of the
measured diffraction lines were observed (Figure 6).
Furthermore, steamside oxidation of the austenitic steel
was found to be considerably influenced by the exposure
conditions of the tubes and the characteristics of the
initial microstructure of the steel surface; an example is
shown in Figure 6. For the three different TP347H
samples, the formation of hematite seems to be similar,
and the measured Bragg angles correspond to the
theoretical values for stoichiometric phase composition.
However, considerable differences were observed for the
spinel phase: Overlapping diffraction lines indicate that
solid solutions rather than solely pure magnetite formed
on the steamside surfaces of the steel. For the coarse-
grained austenitic steel TP347H (samples TP-CG-1 and
-2), a shift of the Bragg angles toward lower values

Fig. 4—Depth dependence of the lattice parameters calculated from
measurements after stepwise removal of the steamside oxide scale on
X20CrMoV12-1. The occurrence of two distinct lattice parameters
indicates the simultaneous presence of two spinel phases.

Fig. 3—Example of line profiles measured after the second (41 lm,
gray) and the fifth (144 lm, black) removal of the steamside oxide
on X20CrMoV12-1. The intensity maxima correspond to the magne-
tite phase.

Fig. 5—X-ray diffractogram measured on the concave (steamside)
surface of X20CrMoV12-1 after removal of approximately 260 lm
from the original surface; the magnification of a selected range is
shown in the upper right corner. The theoretical positions of Bragg
angles corresponding to Cr23C6 carbides (closed triangles) and a-iron
(open triangles) are marked.
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indicates the presence of manganese in the spinel, which
agrees with EDS surface measurements. Compositional
changes of the spinel phase occur as a function of depth
as indicated by pronounced asymmetries and a shift of
the diffraction line maxima (Figure 7). Directly at the
surface, the steamside oxide consists of manganese-
containing spinel (in addition to hematite). Approxi-
mately 5 lm beneath the surface, i.e., after the first
removal step, the measurements indicate clearly the
coexistence of two spinel phases: pure magnetite and a
solid solution spinel with manganese and chromium.
With increasing distance from the surface, the volume
fraction of pure magnetite decreases, and the oxide
consists mainly of manganese- and chromium-contain-
ing spinel. Grazing incidence measurements confirm this
depth dependence of the spinel phases for coarse-
grained TP347H.

Similar to the observations for the X20CrMoV12-1
and the coarse-grained TP347H superheater tubes, also
for the fine-grained austenitic steel TP347H-FG the
composition of the hematite phase remains unchanged
in depth (depth-dependent measurements with grazing
incidence measurements and after various removal steps
indicate no change of the measured Bragg angles, which
correspond well with the theoretical values). In contrast
to the previously mentioned coexistence of two spinel
phases with different composition observed for coarse-
grained TP347H, a pure magnetite phase was not
observed for the fine-grained steel TP347H, and
throughout the whole oxide scale, the spinel phase
consists of solid solutions. To prove whether the absence
of pure magnetite is a local effect and related to possible
inhomogeneity or spallation, additional measurements
were carried out at several positions on the fine-grained
austenitic superheater tube, but magnetite was not

detected. The chemical composition of the spinel phase
changes considerably with depth. Enhanced diffusion
because of the higher density of grain boundaries in the
fine-grained austenitic steel obviously yields solid solu-
tions of various alloying elements (Ni, Mn, and Cr) in
the spinel phase. However, unambiguous phase identi-
fication is hindered considerably by strongly overlap-
ping peaks and pronounced preferred crystallographic
orientations. As a result, mostly individual diffraction
lines rather than a set of reflections corresponding to the
same phase can be found. Even the application of
different wavelengths in combination with grazing
incidence measurements did not allow clear phase
identification. An example of changing phase composi-
tions with depth is shown in Figure 8.

Fig. 6—Example of diffraction line profiles measured for various
samples of TP347H superheater tubes with different microstructure
and position within the superheater loop (i.e., with and without heat
flux): coarse-grained TP347H (sample TP-CG-2, black line), coarse-
grained TP347H (sample TP-CG-1, dotted line), and fine-grained
TP347H (line with marker). The theoretical positions corresponding
to hematite (open triangle), magnetite (black triangle), and MnCr2O4

(gray triangle) are marked.

Fig. 7—Selected diffraction lines measured for coarse-grained
TP347H (sample TP-CG-1) indicating considerable changes of the
oxide in depth: original surface (black line in (a)), after removal of
5 lm (gray lines in (a) and (b)), and after removal of 25 lm (black
line in (b)). The theoretical positions corresponding to hematite
(open triangle), magnetite (black triangle), and MnCr2O4 (gray trian-
gle) are marked.
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B. Phase-Specific Residual Stresses on the Steamside
of Superheater Tubes

XRD stress analysis on the inner side, i.e., the concave
surfaces, of the tubes required cutting the tubes into
rings, which allowed the X-ray beam to enter and leave
the sample through the ring openings. Cutting rings
from the tube should not have affected their circumfer-
ential stresses. However, stress relaxation in longitudinal
direction cannot be excluded, in particular, because of
the limited widths of the cut rings, which was required
for avoiding shading effects in the X-ray path. Accord-
ingly, the measurements revealed longitudinal stresses
for the ring rather than the entire tube.

In addition to the aforementioned difficulties and
limitations related to stress analysis on the steamside of
the superheater tubes, meaningful measurements on the
concave side of the ring samples were challenging
because accurate positioning of the inner surface of
the rings was hindered by the sample geometry, and
commonly applied sample positioning tools cannot be

used in this case. Therefore, nickel powder was applied
on the concave surface of the samples and used for
accurate height positioning of the samples in the
diffractometer. Despite the careful and extensive align-
ment of each sample, the measurements on the inner side
of the rings, including tilting the samples as required for
stress analysis, were challenging; relatively large stan-
dard deviations for the regression lines in the sin2w plots
indicate the measurement difficulties. Nevertheless, the
measurements revealed distinct differences in the state of
residual stresses for the steamside oxides on ferritic-
martensitic and austenitic steel tubes (Table IV).
For the ferritic-martensitic steel X20CrMoV12-1, the

measured lattice strain increases linearly with sin2w for
both the hematite and the magnetite phases, and
accordingly, tensile stresses were determined for both
phases. In contrast, the steamside oxides on coarse-
grained austenitic steel tubes TP347H-CG were found to
be under compressive stress as obtained from the linear
decrease of the measured lattice strain with sin2w. For
the fine-grained austenitic steel TP347H-FG, nonlinear
lattice strain distributions were determined on the inner
side of the ring samples, i.e., for the steamside oxides.
Figure 9 shows an example of such a sin2w-plot (mea-
surements on other fine-grained TP347 samples, in
addition to the sample of the current work, confirmed
this result), which indicates that no linear regression of
the measured data for stress calculation can be applied.
The most common reasons for deviations from line-

arity in the sin2w plot (crystallographic texture, grain
statistics, stress gradients, and shear stresses[22]) do not
apply to the current samples. Although grains are not
oriented randomly, the influence of the crystallographic
texture is not strong, and reasonably good diffracted
intensities were obtained over the whole w-range. More
important is the influence of chemical inhomogeneities as
a result of enhanced diffusion of alloying elements in the
fine-grained austenitic steel. This may result in both
in-plane and in-depth variations of the local phase
compositions and, hence, inevitable uncertainties in peak
profile fitting and deconvolution. The observed asym-
metric line profiles for the fine-grained TP347 samples
support this interpretation but indicate also that XRD
residual stress analysis on those samples has limited
meaning (in addition to the difficulties related to the
sample geometry,[32,33] as mentioned previously).
The clear differences in the stress state of the two

coarse-grained steels, i.e., tensile stresses for the ferritic-

Table IV. Residual Stresses for the Hematite (226 reflection) and Magnetite (731 reflection) Phases in the Steamside Oxides

on the Superheater Tubes

r1 (MPa) r2 (MPa)

Hematite Magnetite Hematite Magnetite

X20-1 +318 ± 40 +467 ± 83 +212 ± 101 +520 ± 165
X20-2 +459 ± 101 +466 ± 35 +176 ± 46 +219 ± 23
TP-FG 2 slopes in sin2w-plots (cf. Fig. 9)
TP-CG-1 * –483 ± 157 * –162 ± 176
TP-CG-2 –300 ± 119 –503 ± 115 –777 ± 94 –592 ± 124

*The measured intensity was not sufficient for stress evaluation.

Fig. 8—Selected diffraction lines measured for fine-grained TP347H
(sample TP-FG) on one and the same location with different X-ray
penetration depth s: Co-Ka radiation, s � 9 lm (dotted line), Cr-Ka
radiation, s � 4 lm (gray line), Co-Ka with incidence angle of
10 deg, s � 5.5 lm (black line). The theoretical positions corre-
sponding to magnetite (open triangle), (Ni,Fe,Mn)O4 (gray triangle),
(Fe,Cr)O4 (black triangle), and the substrate (triangle downward) are
marked.
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martensitic steel X20CrMoV12-1 and compressive
stresses for the austenitic steel TP347H, agree with the
expected stress formation according to the thermal
expansion of the oxides and steels during cooling from
the operating temperature of the superheater tubes. An
exact calculation of thermal stresses fails for magnetite
because of the strong temperature dependence of its
linear thermal expansion coefficient within the expected
temperature range,[23] but the sign of thermal stresses
agrees with the measurements for both steels. Although
it seems that the oxide scale on the steamside of
the superheater tubes is affected by thermal stresses,
the additional contribution of other influences on the
stresses in the oxide film (like geometry- and exposure-
dependent growth stresses, creep, internal oxidation or
solid solution of oxygen in the steel) cannot be evaluated
based on the current data. Regardless of their origin, the
nature of stresses determined for the steamside oxides
formed on both types of steel can be related to the
different resistance against spallation of the steamside
oxides: Oxides on ferritic-martensitic steels do not suffer
from serious spallation, whereas spallation is observed
mainly for oxides on austenitic steels.[3] Compressive
stresses in the oxide, as indeed measured for the
steamside oxides formed on the austenitic stainless
steel, favor cracking and spallation by buckling and
wedging.[20,23]

IV. CONCLUSIONS

The formation of steamside oxides during long-term,
high-temperature exposure of superheater tubes in
thermal power plants, which usually is investigated
solely by microscopic analysis, is studied by means of
XRD. The feasibility of qualitative phase analysis and
residual stress analysis for the characterization of
steamside oxidation on real plant exposed tubes was
proven. For studying oxide growth, XRD is normally

applied straightforwardly on geometrically and compo-
sitional well-defined model samples, which were inten-
tionally heat treated in the laboratory under simplified
conditions to mimic plant exposure. The current work
applies XRD to real plant-exposed superheater tubes,
which is challenging because of (1) the steamside oxides
formed on the inner side of the tubes are difficult to
access by the X-ray beam, (2) the limited accessibility in
combination with the concave surface curvature hinders
alignment of the sample position into the centre of the
diffractometer, and (3) possible local heterogeneities
with respect to the chemical and phase compositions
within the diffracting volume as a result of diffusion,
spallation, or unreported service exposure complicates
the interpretation of the XRD data. Despite all difficul-
ties and limitations, the XRD results obtained from
qualitative phase analysis and the analysis of internal
stresses on real plant-exposed superheater tubes con-
tributed to the understanding of the formation and
spallation of steamside oxides on the investigated
superheater tubes.
Essential differences with respect to the steamside

oxides formed on ferritic-martensitic steel
X20CrMoV12-1 and on lean austenitic stainless steel
TP347H were observed. An XRD phase analysis
revealed the presence of hematite (Fe2O3) on the outer-
most surface on the inner side of the tubes facing the
steam atmosphere. For both types of steel, the hematite
layer was found to have stoichiometric composition
regardless of the exposure conditions in the power plant.
In larger depths, beneath the hematite layer, the steam-
side oxides contain a spinel phase, which consisted of
either pure magnetite (Fe3O4) or magnetite with solid
solutions of the steel alloying elements (mainly, Cr and
Mn). In particular, for the fine-grained austenitic steel,
strong peak asymmetries were observed indicating the
coexistence of various solid solution spinels, which
considerably hinder thorough phase identification. A
residual stress analysis on ring samples of the super-
heater tubes revealed that the state of stresses in the
steamside oxides depends mainly on the type of steel:
Tensile stresses form in both the hematite and magnetite
phases on ferritic-martensitic superheater tubes, whereas
the steamside oxides on coarse-grained austenitic tubes
are under compressive stress, which can explain dramatic
spallation of steamside oxides on austenitic steel.
An XRD analysis on steamside oxides on plant-

exposed superheater tubes considerably supplements the
microscopic analysis of the grown oxides, and it should
be applied as an additional rather than an alternative
characterization method for the following reasons.
Straightforward phase identification for the oxide scale
solely based on X-ray diffraction is limited because
slight differences of the chemical composition and
corresponding changes of the unit cell parameters for
phases comprising the same crystal structure (e.g., spinel
containing various alloying elements in solid solution)
cannot be resolved. XRD provides absorption-weighted
averages originating from a relatively large diffracting
volume, and hence, local heterogeneities cannot be
revealed. Supplementing information on the local dis-
tribution of diffusing species by means of, e.g., EDS, is

Fig. 9—Typical lattice strain distribution measured on the steamside,
i.e., the inner side, of ring samples of the fine-grained austenitic steel
tube (example shown: sample TP-FG, u = 0, hematite).
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therefore of particular importance. Furthermore, the
information on the local distribution of individual
phases in a multiphase material gained solely from
XRD depends on the used technique: From a single
measurement indicating the simultaneous presence of
several phases within the diffracting volume, it cannot be
concluded whether the various phases are arranged as
multilayers on top of each other or as local precipitates
within a matrix. A diffraction analysis with systematic
variations of the X-ray penetration depth by grazing
incidence measurements, however, allows depth-
resolved phase analysis, and hence, in-depth gradients
in terms of either gradual changes of the stoichiometry
of a certain phase or several phases formed in different
depths can be evaluated. Although the complementary
information from XRD and microscopic techniques is
helpful for thorough phase analysis, the ability to
determine residual stresses is a clear advantage of
XRD. Phase-specific stresses in the near-surface region
are available by conventional X-rays (as shown in the
present study), but the nondestructive analysis of stress
gradients in larger depths would require the use of
synchrotron radiation.

The current examples of XRD analysis on real
superheater tubes also indicate that comparative studies
applying XRD routinely on replaced superheater tubes
as an initial inspection tool can help to define specific
locations for dedicated microscopic studies. Often,
plant-exposed superheater tubes show some variations
of the appearance, color, and roughness of steamside
oxides, which can be observed by macroscopic visual
inspection on various locations on the tube. For such
odd-looking locations, XRD nevertheless confirmed the
presence of identical phases as in other locations. This
finding indicates that solely visual evaluation of the
oxide scale appearance can be misleading, and for the
current work, the reproducible phase identification
regardless of the position on one and the same tube
emphasizes the informational value of the XRD results.
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