408 research outputs found
Unraveling from Within? The Affordable Care Act and Self-Undermining Policy Feedbacks
The 2010 Patient Protection and Affordable Care Act (ACA) passed through Congress on partisan lines and with only lukewarm public support. The Obama administration and Congressional Democrats, though, had reason to expect that the ACA’s political fortunes would substantially improve as the acrimonious debate over its enactment faded and millions of Americans came to receive significant benefits from health care reform. But 5 years after its passage, the ACA’s political foundations remain shaky. We suggest that one reason for the ACA’s unsettled fate is the role of policy feedbacks that undermine public support for and opponents’ acceptance of the program. The ACA experience highlights how policy feedbacks can vary widely in their political impact, and suggests that some policies are in fact self-undermining. We also emphasize the crucial role of partisan polarization as a mediating factor in shaping policy feedbacks
A theoretical study of the conversion of gas phase methanediol to formaldehyde
Methanediol, or methylene glycol, is a product of the liquid phase reaction of water and formaldehyde and is a predicted interstellar grain surface species. Detection of this molecule in a hot core environment would advance the understanding of complex organic chemistry in the interstellar medium, but its laboratory spectroscopic characterization is a prerequisite for such observational searches. This theoretical study investigates the unimolecular decomposition of methanediol, specifically the thermodynamic and kinetic stability of the molecule under typical laboratory and interstellar conditions. Methanediol was found to be thermodynamically stable at temperatures of <100 K, which is the characteristic temperature range for interstellar grain mantles. The infinite-pressure RRKM unimolecular decomposition rate was found to be <10^(−18) s^(−1) at 300 K, indicating gas phase kinetic stability for typical laboratory and hot core temperatures. Therefore, both laboratory studies of and observational searches for this molecule should be feasible
Policy Feedback
This element explores early and more recent contributions of the policy feedback literature to clarify the meaning of this concept and its contribution to both political science and policy studies. This element also discusses the practical implications of policy feedback research through a discussion of its potential impact on policy design
Why and how do political actors pursue risky welfare state reforms?
Why and how do political actors pursue risky welfare state reforms, in spite of the institutional mechanisms and political resistance that counteract change? This is one of the key puzzles of contemporary welfare state research, which is brought about by the absence of a complete account that identifies both the cause and causal mechanisms of risky reforms. In this article we offer a remedy for this lacuna. Prospect theory teaches us that political actors will only undertake risky reforms if they consider themselves to be in a losses domain, that is when their current situation is unacceptable. Next, we discuss the strategies that political actors use to avoid the blame associated with risky reforms. These provide the causal mechanisms linking cause and effect. The sudden outburst of risky reforms in formerly 'immovable' Italy provides an empirical illustration of our account. Copyright © 2007 Sage Publications
ProtoDESI: First On-Sky Technology Demonstration for the Dark Energy Spectroscopic Instrument
The Dark Energy Spectroscopic Instrument (DESI) is under construction to
measure the expansion history of the universe using the baryon acoustic
oscillations technique. The spectra of 35 million galaxies and quasars over
14,000 square degrees will be measured during a 5-year survey. A new prime
focus corrector for the Mayall telescope at Kitt Peak National Observatory will
deliver light to 5,000 individually targeted fiber-fed robotic positioners. The
fibers in turn feed ten broadband multi-object spectrographs. We describe the
ProtoDESI experiment, that was installed and commissioned on the 4-m Mayall
telescope from August 14 to September 30, 2016. ProtoDESI was an on-sky
technology demonstration with the goal to reduce technical risks associated
with aligning optical fibers with targets using robotic fiber positioners and
maintaining the stability required to operate DESI. The ProtoDESI prime focus
instrument, consisting of three fiber positioners, illuminated fiducials, and a
guide camera, was installed behind the existing Mosaic corrector on the Mayall
telescope. A Fiber View Camera was mounted in the Cassegrain cage of the
telescope and provided feedback metrology for positioning the fibers. ProtoDESI
also provided a platform for early integration of hardware with the DESI
Instrument Control System that controls the subsystems, provides communication
with the Telescope Control System, and collects instrument telemetry data.
Lacking a spectrograph, ProtoDESI monitored the output of the fibers using a
Fiber Photometry Camera mounted on the prime focus instrument. ProtoDESI was
successful in acquiring targets with the robotically positioned fibers and
demonstrated that the DESI guiding requirements can be met.Comment: Accepted versio
Recycling bins, garbage cans or think tanks? Three myths regarding policy analysis institutes
The phrase 'think tank' has become ubiquitous – overworked and underspecified – in the political lexicon. It is entrenched in scholarly discussions of public policy as well as in the 'policy wonk' of journalists, lobbyists and spin-doctors. This does not mean that there is an agreed definition of think tank or consensual understanding of their roles and functions. Nevertheless, the majority of organizations with this label undertake policy research of some kind. The idea of think tanks as a research communication 'bridge' presupposes that there are discernible boundaries between (social) science and policy. This paper will investigate some of these boundaries. The frontiers are not only organizational and legal; they also exist in how the 'public interest' is conceived by these bodies and their financiers. Moreover, the social interactions and exchanges involved in 'bridging', themselves muddy the conception of 'boundary', allowing for analysis to go beyond the dualism imposed in seeing science on one side of the bridge, and the state on the other, to address the complex relations between experts and public policy
First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data
Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of
continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a
fully coherent search, based on matched filtering, which uses the position and rotational parameters
obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto-
noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch
between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have
been developed, allowing a fully coherent search for gravitational waves from known pulsars over a
fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of
11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial
outliers, further studies show no significant evidence for the presence of a gravitational wave signal.
Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of
the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for
the first time. For an additional 3 targets, the median upper limit across the search bands is below the
spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried
out so far
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
- …