89 research outputs found

    Mental Health Diagnoses and Utilization of VA Non-Mental Health Medical Services Among Returning Iraq and Afghanistan Veterans

    Get PDF
    Over 35% of returned Iraq and Afghanistan veterans in VA care have received mental health diagnoses; the most prevalent is post-traumatic stress disorder (PTSD). Little is known about these patients’ use of non-mental health medical services and the impact of mental disorders on utilization. To compare utilization across three groups of Iraq and Afghanistan veterans: those without mental disorders, those with mental disorders other than PTSD, and those with PTSD. National, descriptive study of 249,440 veterans newly utilizing VA healthcare between October 7, 2001 and March 31, 2007, followed until March 31, 2008. We used ICD9-CM diagnostic codes to classify mental health status. We compared utilization of outpatient non-mental health services, primary care, medical subspecialty, ancillary services, laboratory tests/diagnostic procedures, emergency services, and hospitalizations during veterans’ first year in VA care. Results were adjusted for demographics and military service and VA facility characteristics. Veterans with mental disorders had 42–146% greater utilization than those without mental disorders, depending on the service category (all P < 0.001). Those with PTSD had the highest utilization in all categories: 71–170% greater utilization than those without mental disorders (all P < 0.001). In adjusted analyses, compared with veterans without mental disorders, those with mental disorders other than PTSD had 55% higher utilization of all non-mental health outpatient services; those with PTSD had 91% higher utilization. Female sex and lower rank were also independently associated with greater utilization. Veterans with mental health diagnoses, particularly PTSD, utilize significantly more VA non-mental health medical services. As more veterans return home, we must ensure resources are allocated to meet their outpatient, inpatient, and emergency needs

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Endoscopic diagnosis of acute intestinal GVHD following allogeneic hematopoietic SCT: a retrospective analysis in 175 patients

    Get PDF
    Diagnosis of acute intestinal GVHD (aGVHD) following allogeneic hematopoietic cell transplantation is based on clinical symptoms and histological lesions. This retrospective analysis aimed to validate the ‘Freiburg Criteria' for the endoscopic grading of intestinal aGVHD. Grade 1: no clear-cut criteria; grade 2: spotted erythema; grade 3: aphthous lesions; and grade 4: confluent defects, ulcers, denudation of the mucosa. Having excluded patients with infectious diarrhea, we evaluated 175 consecutive patients between January 2001 and June 2009. Setting a cutoff between grade 1 (no change in therapy) and grade 2 (intensification of immunosuppression), macroscopy had a sensitivity of 89.2% (95% confidence interval (CI): 80.4–94.9%), a specificity of 79.4% (95% CI: 69.6–87.1%), a positive-predictive value of 79.6% (95% CI: 70.0–87.2%) and a negative-predictive value of 89.0% (95% CI: 80.2–94.9%). In all, 20% of patients with aGVHD in the lower gastrointestinal tract (GIT) had lesions only in the terminal ileum. In all patients with aGVHD ⩾2 of the upper GIT, typical lesions were also found in the lower GIT. Ileo-colonoscopy showed the highest diagnostic yield for aGVHD. In conclusion, the ‘Freiburg Criteria' for macroscopic diagnosis of intestinal aGVHD provide high accuracy for identifying aGVHD ⩾2

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Commissioning of the CMS high-level trigger with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS High-Level Trigger (HLT) is responsible for ensuring that data samples with potentially interesting events are recorded with high efficiency and good quality. This paper gives an overview of the HLT and focuses on its commissioning using cosmic rays. The selection of triggers that were deployed is presented and the online grouping of triggered events into streams and primary datasets is discussed. Tools for online and offline data quality monitoring for the HLT are described, and the operational performance of the muon HLT algorithms is reviewed. The average time taken for the HLT selection and its dependence on detector and operating conditions are presented. The HLT performed reliably and helped provide a large dataset. This dataset has proven to be invaluable for understanding the performance of the trigger and the CMS experiment as a whole.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Systematic review of the validity and reliability of consumer-wearable activity trackers

    Get PDF
    Abstract Background Consumer-wearable activity trackers are electronic devices used for monitoring fitness- and other health-related metrics. The purpose of this systematic review was to summarize the evidence for validity and reliability of popular consumer-wearable activity trackers (Fitbit and Jawbone) and their ability to estimate steps, distance, physical activity, energy expenditure, and sleep. Methods Searches included only full-length English language studies published in PubMed, Embase, SPORTDiscus, and Google Scholar through July 31, 2015. Two people reviewed and abstracted each included study. Results In total, 22 studies were included in the review (20 on adults, 2 on youth). For laboratory-based studies using step counting or accelerometer steps, the correlation with tracker-assessed steps was high for both Fitbit and Jawbone (Pearson or intraclass correlation coefficients (CC) > =0.80). Only one study assessed distance for the Fitbit, finding an over-estimate at slower speeds and under-estimate at faster speeds. Two field-based studies compared accelerometry-assessed physical activity to the trackers, with one study finding higher correlation (Spearman CC 0.86, Fitbit) while another study found a wide range in correlation (intraclass CC 0.36–0.70, Fitbit and Jawbone). Using several different comparison measures (indirect and direct calorimetry, accelerometry, self-report), energy expenditure was more often under-estimated by either tracker. Total sleep time and sleep efficiency were over-estimated and wake after sleep onset was under-estimated comparing metrics from polysomnography to either tracker using a normal mode setting. No studies of intradevice reliability were found. Interdevice reliability was reported on seven studies using the Fitbit, but none for the Jawbone. Walking- and running-based Fitbit trials indicated consistently high interdevice reliability for steps (Pearson and intraclass CC 0.76–1.00), distance (intraclass CC 0.90–0.99), and energy expenditure (Pearson and intraclass CC 0.71–0.97). When wearing two Fitbits while sleeping, consistency between the devices was high. Conclusion This systematic review indicated higher validity of steps, few studies on distance and physical activity, and lower validity for energy expenditure and sleep. The evidence reviewed indicated high interdevice reliability for steps, distance, energy expenditure, and sleep for certain Fitbit models. As new activity trackers and features are introduced to the market, documentation of the measurement properties can guide their use in research settings

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe

    Performance of CMS Hadron Calorimeter Timing and Synchronization using Test Beam, Cosmic Ray, and LHC Beam Data

    Get PDF
    Peer reviewe

    Performance of the CMS drift tube chambers with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2010 IOPStudies of the performance of the CMS drift tube barrel muon system are described, with results based on data collected during the CMS Cosmic Run at Four Tesla. For most of these data, the solenoidal magnet was operated with a central field of 3.8 T. The analysis of data from 246 out of a total of 250 chambers indicates a very good muon reconstruction capability, with a coordinate resolution for a single hit of about 260 Îźm, and a nearly 100% efficiency for the drift tube cells. The resolution of the track direction measured in the bending plane is about 1.8 mrad, and the efficiency to reconstruct a segment in a single chamber is higher than 99%. The CMS simulation of cosmic rays reproduces well the performance of the barrel muon detector.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore