92 research outputs found

    Aging Skin: Nourishing from Out-In. Lessons from Wound Healing

    Get PDF
    Skin lesion therapy, peculiarly in the elderly, cannot be isolated from understanding that the skin is an important organ consisting of different tissues. Furthermore, dermis health is fundamental for epidermis integrity, and so adequate nourishment is mandatory in maintaining skin integrity. The dermis nourishes the epidermis, and a healthy epidermis protects the dermis from the environment, so nourishing the dermis through the epidermal barrier is a technical problem yet to be resolved. This is also a consequence of the laws and regulations restricting cosmetics, which cannot have properties that pass the epidermal layer. There is higher investment in cosmetics than in the pharmaceutical industry dealing with skin therapies, because the costs of drug registration are enormous and the field is unprofitable. Still, wound healing may be seen as an opportunity to “feed” the dermis directly. It could also verify whether providing substrates could promote efficient healing and test optimal skin integrity maintenance, if not skin rejuvenation, in an ever aging population

    Chimeric aptamers in cancer cell-targeted drug delivery

    Get PDF
    Aptamers are single-stranded structured oligonucleotides (DNA or RNA) that can bind to a wide range of targets ("apatopes") with high affinity and specificity. These nucleic acid ligands, generated from pools of random-sequence by an in vitro selection process referred to as systematic evolution of ligands by exponential enrichment (SELEX), have now been identified as excellent tools for chemical biology, therapeutic delivery, diagnosis, research, and monitoring therapy in real-time imaging. Today, aptamers represent an interesting class of modern Pharmaceuticals which with their low immunogenic potential mimic extend many of the properties of monoclonal antibodies in diagnostics, research, and therapeutics. More recently, chimeric aptamer approach employing many different possible types of chimerization strategies has generated more stable and efficient chimeric aptamers with aptamer-aptamer, aptamer-nonaptamer biomacromolecules (siRNAs, proteins) and aptamer-nanoparticle chimeras. These chimeric aptamers when conjugated with various biomacromolecules like locked nucleic acid (LNA) to potentiate their stability, biodistribution, and targeting efficiency, have facilitated the accurate targeting in preclinical trials. We developed LNA-aptamer (anti-nucleolin and EpCAM) complexes which were loaded in iron-saturated bovine lactofeerin (Fe-blf)-coated dopamine modified surface of superparamagnetic iron oxide (Fe3O4) nanoparticles (SPIONs). This complex was used to deliver the specific aptamers in tumor cells in a co-culture model of normal and cancer cells. This review focuses on the chimeric aptamers, currently in development that are likely to find future practical applications in concert with other therapeutic molecules and modalities

    Study of e+e−→ppˉe^+e^- \rightarrow p\bar{p} in the vicinity of ψ(3770)\psi(3770)

    Full text link
    Using 2917 pb−1\rm{pb}^{-1} of data accumulated at 3.773~GeV\rm{GeV}, 44.5~pb−1\rm{pb}^{-1} of data accumulated at 3.65~GeV\rm{GeV} and data accumulated during a ψ(3770)\psi(3770) line-shape scan with the BESIII detector, the reaction e+e−→ppˉe^+e^-\rightarrow p\bar{p} is studied considering a possible interference between resonant and continuum amplitudes. The cross section of e+e−→ψ(3770)→ppˉe^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}, σ(e+e−→ψ(3770)→ppˉ)\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}), is found to have two solutions, determined to be (0.059±0.032±0.0120.059\pm0.032\pm0.012) pb with the phase angle ϕ=(255.8±37.9±4.8)∘\phi = (255.8\pm37.9\pm4.8)^\circ (<<0.11 pb at the 90% confidence level), or σ(e+e−→ψ(3770)→ppˉ)=(2.57±0.12±0.12\sigma(e^+e^-\rightarrow\psi(3770)\rightarrow p\bar{p}) = (2.57\pm0.12\pm0.12) pb with ϕ=(266.9±6.1±0.9)∘\phi = (266.9\pm6.1\pm0.9)^\circ both of which agree with a destructive interference. Using the obtained cross section of ψ(3770)→ppˉ\psi(3770)\rightarrow p\bar{p}, the cross section of ppˉ→ψ(3770)p\bar{p}\rightarrow \psi(3770), which is useful information for the future PANDA experiment, is estimated to be either (9.8±5.79.8\pm5.7) nb (<17.2<17.2 nb at 90% C.L.) or (425.6±42.9)(425.6\pm42.9) nb

    Modelling Z → ττ processes in ATLAS with τ-embedded Z → ΌΌ data

    Get PDF
    This paper describes the concept, technical realisation and validation of a largely data-driven method to model events with Z→ττ decays. In Z→ΌΌ events selected from proton-proton collision data recorded at √s=8 TeV with the ATLAS experiment at the LHC in 2012, the Z decay muons are replaced by τ leptons from simulated Z→ττ decays at the level of reconstructed tracks and calorimeter cells. The τ lepton kinematics are derived from the kinematics of the original muons. Thus, only the well-understood decays of the Z boson and τ leptons as well as the detector response to the τ decay products are obtained from simulation. All other aspects of the event, such as the Z boson and jet kinematics as well as effects from multiple interactions, are given by the actual data. This so-called τ-embedding method is particularly relevant for Higgs boson searches and analyses in ττ final states, where Zarrowττ decays constitute a large irreducible background that cannot be obtained directly from data control samples. In this paper, the relevant concepts are discussed based on the implementation used in the ATLAS Standard Model H→ττ analysis of the full datataset recorded during 2011 and 2012

    Effect of nanoscale curvature sign and bundle structure on supercritical H2 and CH4 adsorptivity of single wall carbon nanotube

    Get PDF
    The adsorptivities of supercritical CH(4) and H(2) of the external and internal tube walls of single wall carbon nanotube (SWCNT) were determined. The internal tube wall of the negative curvature showed the higher adsorptivities for supercritical CH(4) and H(2) than the external tube wall of the positive curvature due to their interaction potential difference. Fine SWCNT bundles were prepared by the capillary force-aided drying treatment using toluene or methanol in order to produce the interstitial pore spaces having the strongest interaction potential for CH(4) or H(2); the bundled SWCNT showed the highest adsorptivity for supercritical CH(4) and H(2). It was clearly shown that these nanostructures of SWCNTs are crucial for supercritical gas adsorptivity.ArticleADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY. 17(3):643-651 (2011)journal articl

    Optimal operating strategy of short turning lines for the battery electric bus system

    No full text
    202203 bcwhVersion of RecordSelf-fundedPublishe

    Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing

    No full text
    Real-time simulation of industrial equipment is a huge challenge nowadays. The high performance and fine-grained parallel computing provided by graphics processing units (GPUs) bring us closer to our goals. In this article, an industrial-scale rotating drum is simulated using simplified discrete element method (DEM) without consideration of the tangential components of contact force and particle rotation. A single CPU is used first to simulate a small model system with about 8000 particles in real-time, and the simulation is then scaled up to industrial scale using more than 200 GPUs in a 10 domain-decomposition parallelization mode. The overall speed is about 1/11 of the real-time. Optimization of the communication part of the parallel GPU codes can speed up the simulation further, indicating that such real-time simulations have not only methodological but also industrial implications in the near future. (C) 2011 Published by Elsevier B.V. on behalf of Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences
    • 

    corecore