3,720 research outputs found

    Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families.Thiswork was supported by the Natural Environment ResearchCouncil (grant no. NE/G017 24/1), the Czech Science Fou nda-tion (grant no. P501/12/G090), the AVCR (grant no.RVO:60077344) and a Beatriu de Pinos postdoctoral fellowshipto J.P. (grant no. 2011-A-00292; Catalan Government-E.U. 7thF.P.)

    Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma

    Full text link
    Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those electromagnetic modes whose magnetic field perturbations are perpendicular to the ambient magneticeld, i.e.,B1 \perp B0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them and the O-mode are affected by thermal anisotropies, since they satisfy the required condition B1\perpB0. By contrast, the perpendicularly propagating X-mode and the modes derived from it (the pure transverse X-mode and Bernstein mode) show no such effect. In general, we note that the thermal anisotropy modifies the parallel propagating modes via the parallel acoustic effect, while it modifies the perpendicular propagating modes via the Larmor-radius effect. In oblique propagation for kinetic Alfven waves, the thermal anisotropy affects the kinetic regime more than it affects the inertial regime. The generalized fast mode exhibits two distinct acoustic effects, one in the direction parallel to the ambient magnetic field and the other in the direction perpendicular to it. In the fast-mode instability, the magneto-sonic wave causes suppression of the firehose instability. We discuss all these propagation characteristics and present graphic illustrations

    Data production models for the CDF experiment

    Get PDF
    The data production for the CDF experiment is conducted on a large Linux PC farm designed to meet the needs of data collection at a maximum rate of 40 MByte/sec. We present two data production models that exploits advances in computing and communication technology. The first production farm is a centralized system that has achieved a stable data processing rate of approximately 2 TByte per day. The recently upgraded farm is migrated to the SAM (Sequential Access to data via Metadata) data handling system. The software and hardware of the CDF production farms has been successful in providing large computing and data throughput capacity to the experiment.Comment: 8 pages, 9 figures; presented at HPC Asia2005, Beijing, China, Nov 30 - Dec 3, 200

    Data processing model for the CDF experiment

    Get PDF
    The data processing model for the CDF experiment is described. Data processing reconstructs events from parallel data streams taken with different combinations of physics event triggers and further splits the events into datasets of specialized physics datasets. The design of the processing control system faces strict requirements on bookkeeping records, which trace the status of data files and event contents during processing and storage. The computing architecture was updated to meet the mass data flow of the Run II data collection, recently upgraded to a maximum rate of 40 MByte/sec. The data processing facility consists of a large cluster of Linux computers with data movement managed by the CDF data handling system to a multi-petaByte Enstore tape library. The latest processing cycle has achieved a stable speed of 35 MByte/sec (3 TByte/day). It can be readily scaled by increasing CPU and data-handling capacity as required.Comment: 12 pages, 10 figures, submitted to IEEE-TN

    Jupiter’s low-altitude auroral zones: Fields, particles, plasma waves, and density depletions

    Get PDF
    The Juno spacecraft's polar orbits have enabled direct sampling of Jupiter's low-altitude auroral field lines. While various data sets have identified unique features over Jupiter's main aurora, they are yet to be analyzed altogether to determine how they can be reconciled and fit into the bigger picture of Jupiter's auroral generation mechanisms. Jupiter's main aurora has been classified into distinct “zones”, based on repeatable signatures found in energetic electron and proton spectra. We combine fields, particles, and plasma wave data sets to analyze Zone-I and Zone-II, which are suggested to carry upward and downward field-aligned currents, respectively. We find Zone-I to have well-defined boundaries across all data sets. H+ and/or H3+ cyclotron waves are commonly observed in Zone-I in the presence of energetic upward H+ beams and downward energetic electron beams. Zone-II, on the other hand, does not have a clear poleward boundary with the polar cap, and its signatures are more sporadic. Large-amplitude solitary waves, which are reminiscent of those ubiquitous in Earth's downward current region, are a key feature of Zone-II. Alfvénic fluctuations are most prominent in the diffuse aurora and are repeatedly found to diminish in Zone-I and Zone-II, likely due to dissipation, at higher altitudes, to energize auroral electrons. Finally, we identify significant electron density depletions, by up to 2 orders of magnitude, in Zone-I, and discuss their important implications for the development of parallel potentials, Alfvénic dissipation, and radio wave generation

    Search for Neutral Higgs Bosons in Events with Multiple Bottom Quarks at the Tevatron

    Get PDF
    The combination of searches performed by the CDF and D0 collaborations at the Fermilab Tevatron Collider for neutral Higgs bosons produced in association with b quarks is reported. The data, corresponding to 2.6 fb-1 of integrated luminosity at CDF and 5.2 fb-1 at D0, have been collected in final states containing three or more b jets. Upper limits are set on the cross section multiplied by the branching ratio varying between 44 pb and 0.7 pb in the Higgs boson mass range 90 to 300 GeV, assuming production of a narrow scalar boson. Significant enhancements to the production of Higgs bosons can be found in theories beyond the standard model, for example in supersymmetry. The results are interpreted as upper limits in the parameter space of the minimal supersymmetric standard model in a benchmark scenario favoring this decay mode.Comment: 10 pages, 2 figure

    Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}

    Get PDF
    Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV collected by the CDF II detector, we present a cross section measurement of top-quark pair production with an additional radiated photon. The events are selected by looking for a lepton, a photon, significant transverse momentum imbalance, large total transverse energy, and three or more jets, with at least one identified as containing a b quark. The ttbar+photon sample requires the photon to have 10 GeV or more of transverse energy, and to be in the central region. Using an event selection optimized for the ttbar+photon candidate sample we measure the production cross section of, and the ratio of cross sections of the two samples. Control samples in the dilepton+photon and lepton+photon+\met, channels are constructed to aid in decay product identification and background measurements. We observe 30 ttbar+photon candidate events compared to the standard model expectation of 26.9 +/- 3.4 events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009. Assuming no ttbar+photon production, we observe a probability of 0.0015 of the background events alone producing 30 events or more, corresponding to 3.0 standard deviations.Comment: 9 pages, 3 figure

    Precision Top-Quark Mass Measurements at CDF

    Get PDF
    We present a precision measurement of the top-quark mass using the full sample of Tevatron s=1.96\sqrt{s}=1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb1fb^{-1}. Using a sample of ttˉt\bar{t} candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the WW boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with {\it in situ} calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, \mtop = 172.85 \pm0.71(stat) 0.71 (stat) \pm0.85(syst)GeV/c2. 0.85 (syst) GeV/c^{2}.Comment: submitted to Phys. Rev. Let
    corecore