23 research outputs found

    Positrons at Metal Boundary

    Get PDF
    Current knowledge of positron-metal boundary interaction is reviewed. The review interlinks such phenomena as positron trapping at surface, escape of positrons from metals, directional action of metal-metal contact on diffusive movement of positrons and interaction of slow positron beam with surfaces.Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę

    Justify your alpha

    Get PDF
    Benjamin et al. proposed changing the conventional “statistical significance” threshold (i.e.,the alpha level) from p ≤ .05 to p ≤ .005 for all novel claims with relatively low prior odds. They provided two arguments for why lowering the significance threshold would “immediately improve the reproducibility of scientific research.” First, a p-value near .05provides weak evidence for the alternative hypothesis. Second, under certain assumptions, an alpha of .05 leads to high false positive report probabilities (FPRP2 ; the probability that a significant finding is a false positive

    Justify your alpha

    Get PDF
    In response to recommendations to redefine statistical significance to p ≤ .005, we propose that researchers should transparently report and justify all choices they make when designing a study, including the alpha level

    Some remarks on positron/positronium diffusion models

    No full text
    Positrons thermalized near the sample boundary (as well as Ps atoms formed in the sample) can reach the boundary as a result of diffusive movement. Observations of such effects as positron reemission or positron surface trapping as well as positronium emission allow one to calculate respective diffusion lengths. From the presented analysis it follows that some models used in such calculations give quite wrong results

    Some Remarks on Diffusion Model of Positron Reemission and/or Positron Surface Trapping

    No full text
    The problem of a role of boundary conditions in a diffusion model of positron reemission is discussed. It was shown that a sink rate cannot change from zero up to infinity but has an upper limit equal to a half of a mean positron velocity. Some additional relations connected with this result are presented as well

    Adsorption of 4-chlorophenol from aqueous solutions on mixed adsorbents: activated carbon and carbon nanotubes

    No full text
    Celem pracy było zbadanie kinetyki adsorpcji oraz adsorpcji równowagowej 4-chlorofenolu (4-CP) z wody na węglu aktywnym (AC) i nanorurkach węglowych (CNT) oraz na ich mieszaninach o różnym składzie (25/75, 50/50 i 75/25% mas.). Kinetyka adsorpcji przebiegała zgodnie z modelem pseudo 2. rzędu, równowaga adsorpcyjna ustalała się po około 30 minutach w przypadku nanorurek i po około 4 godzinach w przypadku węgla aktywnego. Szybkość adsorpcji 4-CP zwiększała się wraz ze wzrostem ilości nanorurek w mieszaninie adsorbentu, wartość k2 wzrastała z 0,030 g/mmol·min dla AC do 0,709 g/mmol·min dla CNT. Adsorpcja w warunkach równowagowych została opisana za pomocą równań Freundlicha i Langmuira - adsorpcja 4-CP z wody zachodziła zgodnie z modelem Langmuira. Wzrost udziału węgla aktywnego w mieszaninie adsorbentu zwiększał jej zdolność do usuwania 4-CP z roztworu. Wartość maksymalnej pojemności adsorpcyjnej qm wzrosła z 0,296 mmol/g dla CNT do 2,037 mmol/g dla AC.The adsorption process by solid adsorbents is one of the most efficient methods for the removal of organic pollutants from water. Adsorption is attractive for its relative flexibility and simplicity of design, ease of operation and regeneration as well as no or low generation of toxic substances. Among all the applied adsorbents, the activated carbons are the most widely used adsorbents due to their excellent adsorption abilities for organic compounds. The high adsorption capacities of the activated carbons are usually related to their high surface area and pore volume. Recently carbon nanotubes are also used as adsorbents, mainly due to their high rate of adsorption of organic pollutants. The aim of this study was to investigate the adsorption of 4-chlorophenol (4-CP) from aqueous solutions on mixed adsorbents: activated carbon (AC) and carbon nanotubes (CNT). Such a mixed adsorbent combines the advantages of both activated carbon (high adsorption capacity) as well as carbon nanotubes (excellent kinetic properties). Various adsorbents compositions were tested: 0/100, 25/75, 50/50, 75/25 and 100/0 wt.% of activated carbon/carbon nanotubes. The results showed that the adsorption equilibriums were achieved after 30 min for the carbon nanotubes and after about 4 hours for the activated carbon. For the description of the experimental data, the equations of the pseudo-first and pseudo-second order were considered. The correlation coefficients for the pseudo-first order kinetic model were relatively low, whereas the pseudosecond order model gives an excellent fitting with the high R2 values (> 0.99). This indicates that the adsorption system belongs to the second-order kinetic model. The adsorption rate of 4-CP increased with the increase in the amount of carbon nanotubes in the adsorbent mixture from 0.030 g/mmol·min for pure activated carbon to 0.709 g/mmol·min for CNT. In order to investigate the mechanism of the adsorption, the intraparticle diffusion model (Weber-Morris model) was also used. The results showed that the intraparticle diffusion was not the only rate-controlling step. Moreover, the Weber-Morris plots (qt vs. T1/2) were not linear over the whole time range, suggesting that more than one process affected the adsorption. The adsorption was also analyzed as a function of the solution concentration at the equilibrium. Adsorption isotherms of 4-CP were analyzed using the Freundlich and Langmuir models. The R2 values show that the equilibrium data were better represented by the Langmuir isotherm compared to the Freundlich equation. The increase in the amount of activated carbon in the adsorbent mixture resulted in an increase in the adsorption capacity of the adsorbent from 0.296 mmol/g for CNT to 2.037 mmol/g for AC

    Positron Trapping Rate Coefficient for Thermalized Positrons at Metal-Dielectric Interface

    No full text
    On the basis of experimental positron lifetime spectra it was shown that positrons can be trapped at metal-dielectric interface. The coefficient indicating the trapping possibility of the AgŃa3\text{}_{3}AlF6\text{}_{6} interface has been evaluated

    Does the Dielectric-Dielectric Interface Affect the Positron Diffusion Current?

    No full text
    The angular correlations of annihilation radiation have been measured for NaI, NaF and (NaI)0.65\text{}_{0.65}(NaF)0.35\text{}_{0.35} alloy. The angular correlations of annihilation radiation for the alloy appeared to be more similar to the one for NaI than it should be expected from the content of NaI in the alloy. The result can be easily explained by assuming that NaI/NaF interface acts directionally on positron diffusion movement

    Evaluation of the usefulness of peat for removal of chlorophenols from water solutions

    No full text
    Three chlorophenols of various number of chlorine atoms in the molecule (4-CP, 2,4-DCP and 2,4,6-TCP) were selected for experiments. Removal of these compounds from aqueous solutions has been studied using commercially available Spill-Sorb peat from Parland County (Alberta, Canada). To describe the kinetic data pseudo-first and pseudo-second order models were used. The results showed that the adsorption of chlorophenols on the peat fitted well the pseudo-second order kinetic model. The values of the rate constants k2 decreased with the increase in the initial concentration of chlorophenol and with the increase in the number of chlorine atoms in the molecule. Adsorption was analysed as a function of solution concentration at equilibrium. The experimental data received were found to be well described by the Freundlich isotherm equation. KF and n values increased in the order 4-CP2 zmniejszały się wraz ze wzrostem stężenia początkowego chlorofenolu oraz wraz ze wzrostem liczby atomów chloru w cząsteczce. Analizując adsorpcję w funkcji równowagowego stężenia roztworu stwierdzono, że uzyskane dane eksperymentalne dobrze opisywało równanie izotermy Freundlicha. Wartości parametrów KF i n wzrastały w kolejności 4-CP<2,4-DCP<2,4,6-TCP, co sugeruje, że skuteczność adsorpcji wzrastała wraz ze wzrostem liczby atomów chloru w cząsteczce chlorofenolu
    corecore