74 research outputs found

    A matter of appearances:How workers’ aesthetics are regulated in advice, hiring, and at work

    Get PDF
    The time, effort and energy people invest into looking good for work is not simply driven by vanity. Aesthetics have become increasingly important, affecting for instance job opportunities, salaries, status, and recognition. The ‘right’ aesthetics are often a condition for being hired and it is common for employers to set appearance-related standards for employees, particularly in the service and creative sectors. This aesthetization of work puts substantial demands on individuals in terms of time, effort, and mental strain. Moreover, it contributes to the exclusion of certain individuals and bodies. These far-reaching consequences raise questions about how, when, and by whom the importance of aesthetics for work and specific aesthetic norms in the workplace are reinforced. In this dissertation, I look into how the regulation of workers’ aesthetics in the Dutch post-industrial labor market takes place. In four qualitative case studies, I show that aesthetic regulation is an ongoing process performed not only by employers but also by other labor market actors, that it often takes on implicit or concealed forms, and that it is a two-way process, as work aesthetics also regulate workers. At different points in the process of finding and having a job appearances are made to matter. Sometimes in direct ways, but often through unclear and implicit forms of regulation. It is precisely this opacity and ambivalence surrounding the significance of aesthetics in work that results in significant yet underestimated consequences for the alienation of workers, for the structuring of inequalities and exclusions in the job market, and for society-wide aesthetization

    40 OVEREXPRESSION OF hsa-miR-148A PROMOTES TYPE II COLLAGEN SYNTHESIS BY OSTEOARTHRITIC CHONDROCYTES

    Get PDF

    Mitochondrial transport from mesenchymal stromal cells to chondrocytes increases DNA content and proteoglycan deposition In vitro in 3D cultures

    Get PDF
    Objective: Allogeneic mesenchymal stromal cells (MSCs) are used in the 1-stage treatment of articular cartilage defects. The aim of this study is to investigate whether transport of mitochondria exists between chondrocytes and MSCs and to investigate whether the transfer of mitochondria to chondrocytes contributes to the mechanism of action of MSCs. Design: Chondrocytes and MSCs were stained with MitoTracker, and CellTrace was used to distinguish between cell types. The uptake of fluorescent mitochondria was measured in cocultures using flow cytometry. Transport was visualized using fluorescence microscopy. Microvesicles were isolated and the presence of mitochondria was assessed. Mitochondria were isolated from MSCs and transferred to chondrocytes using MitoCeption. Pellets of chondrocytes, chondrocytes with transferred MSC mitochondria, and cocultures were cultured for 28 days. DNA content and proteoglycan content were measured. Mitochondrial DNA of cultured pellets and of repair cartilage tissue was quantified. Results: Mitochondrial transfer occurred bidirectionally within the first 4 hours until 16 hours of coculture. Transport took place via tunneling nanotubes, direct cell-cell contact, and extracellular vesicles. After 28 days of pellet culture, DNA content and proteoglycan deposition were higher in chondrocyte pellets to which MSC mitochondria were transferred than the control groups. No donor mitochondrial DNA was traceable in the biopsies, whereas an increase in MSC mitochondrial DNA was seen in the pellets. Conclusions: These results suggest that mitochondrial transport plays a role in the chondroinductive effect of MSCs on chondrocytes in vitro. However, in vivo no transferred mitochondria could be traced back after 1 year.Molecular Technology and Informatics for Personalised Medicine and Healt

    Methodology for estimating emissions from agriculture in the Netherlands : Calculations of CH4, NH3, N2O, NOx, NMVOC, PM10, PM2.5 and CO2 with the National Emission Model for Agriculture (NEMA), Update 2019

    Get PDF
    The National Emission Model for Agriculture (NEMA) is used to calculate emissions to air from agricultural activities in the Netherlands on a national scale. Emissions of ammonia (NH3) and other N compounds (NOx and N2O) are calculated for animal housing, manure storage, manure application and grazing using a flow model for total ammoniacal nitrogen (TAN). Emissions from the application of inorganic N fertilizer, compost and sewage sludge, cultivation of organic soils, crop residues, and ripening of crops are calculated as well. The NEMA is also used to estimate emissions of methane (CH4) from enteric fermentation and manure management, nonmethane volatile organic compounds (NMVOC) and particulate matter (PM) from manure management and agricultural soils, as well as for carbon dioxide (CO2) from liming. Emissions are calculated in accordance with the criteria of international guidelines and reported in an annual Informative Inventory Report (IIR; for air pollutants) and National Inventory Report (NIR; for greenhouse gases). This methodology report provides an outline of and describes the background to the calculation of emissions according to the NEMA

    Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function

    Get PDF
    Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of l

    SCORE2-OP risk prediction algorithms: estimating incident cardiovascular event risk in older persons in four geographical risk regions

    Get PDF
    Aims The aim of this study was to derive and validate the SCORE2-Older Persons (SCORE2-OP) risk model to estimate 5- and 10-year risk of cardiovascular disease (CVD) in individuals aged over 70 years in four geographical risk regions.Methods and results Sex-specific competing risk-adjusted models for estimating CVD risk (CVD mortality, myocardial infarction, or stroke) were derived in individuals aged over 65 without pre-existing atherosclerotic CVD from the Cohort of Norway (28 503 individuals, 10 089 CVD events). Models included age, smoking status, diabetes, systolic blood pressure, and total- and high-density lipoprotein cholesterol. Four geographical risk regions were defined based on country-specific CVD mortality rates. Models were recalibrated to each region using region-specific estimated CVD incidence rates and risk factor distributions. For external validation, we analysed data from 6 additional study populations {338 615 individuals, 33 219 CVD validation cohorts, C-indices ranged between 0.63 [95% confidence interval (CI) 0.61-0.65] and 0.67 (0.64-0.69)}. Regional calibration of expected-vs.-observed risks was satisfactory. For given risk factor profiles, there was substantial variation across the four risk regions in the estimated 10-year CVD event risk.Conclusions The competing risk-adjusted SCORE2-OP model was derived, recalibrated, and externally validated to estimate 5- and 10-year CVD risk in older adults (aged 70 years or older) in four geographical risk regions. These models can be used for communicating the risk of CVD and potential benefit from risk factor treatment and may facilitate shared decision-making between clinicians and patients in CVD risk management in older persons.Cardiolog

    Pulmonary Function and Blood DNA Methylation A Multiancestry Epigenome-Wide Association Meta-analysis

    Get PDF
    Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate,,0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis

    The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age-and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to similar to 2.8M SNPs with BMI and WHRadjBMI in four strata (men 50y, women 50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR= 50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may providefurther insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.Peer reviewe
    corecore