48 research outputs found
Advances in heterometallic ring-opening (co)polymerisation catalysis
Truly sustainable plastics require renewable feedstocks coupled with efficient production and end-of-life degradation/recycling processes. Some of the most useful degradable materials are aliphatic polyesters, polycarbonates and polyamides, which are often prepared via ring-opening (co)polymerisation (RO(CO)P) using an organometallic catalyst. While there has been extensive research into ligand development, heterometallic cooperativity offers an equally promising yet underexplored strategy to improve catalyst performance, as heterometallic catalysts often exhibit significant activity and selectivity enhancements compared to their homometallic counterparts. This review describes advances in heterometallic RO(CO)P catalyst design, highlighting the overarching structure-activity trends and reactivity patterns to inform future catalyst design
Non-AIDS defining cancers in the D:A:D Study-time trends and predictors of survival : a cohort study
BACKGROUND:Non-AIDS defining cancers (NADC) are an important cause of morbidity and mortality in HIV-positive individuals. Using data from a large international cohort of HIV-positive individuals, we described the incidence of NADC from 2004-2010, and described subsequent mortality and predictors of these.METHODS:Individuals were followed from 1st January 2004/enrolment in study, until the earliest of a new NADC, 1st February 2010, death or six months after the patient's last visit. Incidence rates were estimated for each year of follow-up, overall and stratified by gender, age and mode of HIV acquisition. Cumulative risk of mortality following NADC diagnosis was summarised using Kaplan-Meier methods, with follow-up for these analyses from the date of NADC diagnosis until the patient's death, 1st February 2010 or 6 months after the patient's last visit. Factors associated with mortality following NADC diagnosis were identified using multivariable Cox proportional hazards regression.RESULTS:Over 176,775 person-years (PY), 880 (2.1%) patients developed a new NADC (incidence: 4.98/1000PY [95% confidence interval 4.65, 5.31]). Over a third of these patients (327, 37.2%) had died by 1st February 2010. Time trends for lung cancer, anal cancer and Hodgkin's lymphoma were broadly consistent. Kaplan-Meier cumulative mortality estimates at 1, 3 and 5 years after NADC diagnosis were 28.2% [95% CI 25.1-31.2], 42.0% [38.2-45.8] and 47.3% [42.4-52.2], respectively. Significant predictors of poorer survival after diagnosis of NADC were lung cancer (compared to other cancer types), male gender, non-white ethnicity, and smoking status. Later year of diagnosis and higher CD4 count at NADC diagnosis were associated with improved survival. The incidence of NADC remained stable over the period 2004-2010 in this large observational cohort.CONCLUSIONS:The prognosis after diagnosis of NADC, in particular lung cancer and disseminated cancer, is poor but has improved somewhat over time. Modifiable risk factors, such as smoking and low CD4 counts, were associated with mortality following a diagnosis of NADC
Development and Validation of a Risk Score for Chronic Kidney Disease in HIV Infection Using Prospective Cohort Data from the D:A:D Study
Ristola M. on työryhmien DAD Study Grp ; Royal Free Hosp Clin Cohort ; INSIGHT Study Grp ; SMART Study Grp ; ESPRIT Study Grp jäsen.Background Chronic kidney disease (CKD) is a major health issue for HIV-positive individuals, associated with increased morbidity and mortality. Development and implementation of a risk score model for CKD would allow comparison of the risks and benefits of adding potentially nephrotoxic antiretrovirals to a treatment regimen and would identify those at greatest risk of CKD. The aims of this study were to develop a simple, externally validated, and widely applicable long-term risk score model for CKD in HIV-positive individuals that can guide decision making in clinical practice. Methods and Findings A total of 17,954 HIV-positive individuals from the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study with >= 3 estimated glomerular filtration rate (eGFR) values after 1 January 2004 were included. Baseline was defined as the first eGFR > 60 ml/min/1.73 m2 after 1 January 2004; individuals with exposure to tenofovir, atazanavir, atazanavir/ritonavir, lopinavir/ritonavir, other boosted protease inhibitors before baseline were excluded. CKD was defined as confirmed (>3 mo apart) eGFR In the D:A:D study, 641 individuals developed CKD during 103,185 person-years of follow-up (PYFU; incidence 6.2/1,000 PYFU, 95% CI 5.7-6.7; median follow-up 6.1 y, range 0.3-9.1 y). Older age, intravenous drug use, hepatitis C coinfection, lower baseline eGFR, female gender, lower CD4 count nadir, hypertension, diabetes, and cardiovascular disease (CVD) predicted CKD. The adjusted incidence rate ratios of these nine categorical variables were scaled and summed to create the risk score. The median risk score at baseline was -2 (interquartile range -4 to 2). There was a 1: 393 chance of developing CKD in the next 5 y in the low risk group (risk score = 5, 505 events), respectively. Number needed to harm (NNTH) at 5 y when starting unboosted atazanavir or lopinavir/ritonavir among those with a low risk score was 1,702 (95% CI 1,166-3,367); NNTH was 202 (95% CI 159-278) and 21 (95% CI 19-23), respectively, for those with a medium and high risk score. NNTH was 739 (95% CI 506-1462), 88 (95% CI 69-121), and 9 (95% CI 8-10) for those with a low, medium, and high risk score, respectively, starting tenofovir, atazanavir/ritonavir, or another boosted protease inhibitor. The Royal Free Hospital Clinic Cohort included 2,548 individuals, of whom 94 individuals developed CKD (3.7%) during 18,376 PYFU (median follow-up 7.4 y, range 0.3-12.7 y). Of 2,013 individuals included from the SMART/ESPRIT control arms, 32 individuals developed CKD (1.6%) during 8,452 PYFU (median follow-up 4.1 y, range 0.6-8.1 y). External validation showed that the risk score predicted well in these cohorts. Limitations of this study included limited data on race and no information on proteinuria. Conclusions Both traditional and HIV-related risk factors were predictive of CKD. These factors were used to develop a risk score for CKD in HIV infection, externally validated, that has direct clinical relevance for patients and clinicians to weigh the benefits of certain antiretrovirals against the risk of CKD and to identify those at greatest risk of CKD.Peer reviewe
Efficacy and safety of subcutaneous human HBV-immunoglobulin (Zutectra®) in liver transplantation: An open, prospective, single-arm phase III study
Capture and utilization of CO2 as alternative carbon feedstock for fuels, chemicals, and materials aims at reducing greenhouse gas emissions and fossil resource use. For capture of CO2, a large variety of CO2 sources exists. Since they emit much more CO2 than the expected demand for CO2 utilization, the environmentally most favorable CO2 sources should be selected. For this purpose, we introduce the environmental-merit-order (EMO) curve to rank CO2 sources according to their environmental impacts over the available CO2 supply. To determine the environmental impacts of CO2 capture, compression and transport, we conducted a comprehensive literature study for the energy demands of CO2 supply, and constructed a database for CO2 sources in Europe. Mapping these CO2 sources reveals that CO2 transport distances are usually small. Thus, neglecting transport in a first step, we find that environmental impacts are minimized by capturing CO2 first from chemical plants and natural gas processing, then from paper mills, power plants, and iron and steel plants. In a second step, we computed regional EMO curves considering transport and country-specific impacts for energy supply. Building upon regional EMO curves, we identify favorable locations for CO2 utilization with lowest environmental impacts of CO2 supply, so-called CO2 oases
Recommended from our members
The carbon footprint of the carbon feedstock CO2
Capturing and utilizing CO2 as carbon feedstock for chemicals, fuels, or polymers is frequently discussed to replace fossil carbon and thereby help mitigate climate change. Emission reductions by Carbon Capture and Utilization (CCU) depend strongly on the choice of the CO2 source because CO2 sources differ in CO2 concentration and the resulting energy demand for capture. From a climate-change perspective, CO2 should be captured at the CO2 source with the lowest CO2 emissions from capture. However, reported carbon footprints differ widely for CO2 captured, from strongly negative to strongly positive for the same source. The differences are due to methodological ambiguity in the treatment of multifunctionality in current assessment practice. This paper reviews methodological approaches for determining the carbon footprint of captured CO2 as carbon feedstock, and shows why some approaches lead to suboptimal choices of CO2 sources and that increased consistency in life cycle assessment (LCA) studies on CCU is needed. Based on strict application of Life Cycle Assessment (LCA) standards and guidelines, it is shown that substitution should be applied to avoid suboptimal choices of CO2 sources. The resulting methodological recommendations are applied to estimate the carbon footprint of feedstock CO2 for current CO2 sources in Europe and for future CO2 sources in a scenario for a low carbon economy. For all CO2 sources, the cradle-to-gate footprint of captured CO2 is negative ranging from -0.95 to -0.59 kg CO2 eq. per kg of feedstock CO2 today and from -0.99 to -0.98 kg CO2 eq. in a low carbon economy. The carbon footprints of different CO2 sources differ mainly due to their energy demands. The presented assessment method and the carbon footprints of the CO2 feedstocks CO2 provide the basis for future assessments of carbon capture and utilization processes. This journal i
Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes
The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.ChemE/Catalysis Engineerin