106 research outputs found
On dynamically generated parton distribution functions and their properties
The idea of ``dynamically'' generated parton distribution functions, based on
regular initial conditions at low momentum scale, is reanalyzed with particular
emphasize paid to its compatibility with the factorization mechanism. Basic
consequences of this approach are discussed and compared to those of the
conventional approach, employing singular initial distribution functions.Comment: 15 pages, Latex, 5 figures in PS format attache
The Evolution of Unpolarized and Polarized Structure Functions at Small
A survey is given of recent developments on the resummed small- evolution,
in a framework based on the renormalization group equation, of non--singlet and
singlet structure functions in both unpolarized and polarized deep--inelastic
scattering. The available resummed anomalous dimensions are discussed for all
these cases, and the most important analytic and numerical results are
compiled. The quantitative effects of these small- resummations on the
evolution of the various parton densities and structure functions are
presented, and their present uncertainties are investigated. An application to
QED radiative corrections is given.Comment: 18 pages Latex, including 11 eps-figures, and a style file. To appear
in: Proc. of the International Workshop: QCD and QED in Higher Orders,
Rheinsberg, April, 1996, Nucl. Phys. B (Proc. Suppl
Evolution of Vertebrate Transient Receptor Potential Vanilloid 3 Channels: Opposite Temperature Sensitivity between Mammals and Western Clawed Frogs
Transient Receptor Potential (TRP) channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV) subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution
Working Group Report on the Structure of the Proton
We summarize the developments on the structure of the proton that were
studied at the Workshop on "HERA Physics" that was held in Durham in September
1995. We survey the latest structure function data; we overview the QCD
interpretations of the measurements of the structure functions and of final
state processes; we discuss charm production and the spin properties of the
proton.Comment: 45 pages, latex file using epsfig and ioplppt macros. Figures
included, but full resolution figure files and postscript file of the whole
paper are available via anonymous ftp at
ftp://cpt1.dur.ac.uk/pub/preprints/dtp96/dtp962
Peralkaline Felsic Magmatism of the Atlantic Islands
The oceanic-island magmatic systems of the Atlantic Ocean exhibit significant diversity in their respective sizes, ages, and the compositional ranges of their eruptive products. Nevertheless, almost all of the Atlantic islands and island groups have produced peralkaline felsic magmas, implying that similar petrogenetic regimes may be operating throughout the Atlantic Ocean, and arguably elsewhere. The origins of peralkaline magmas are frequently linked to low-degree partial melting of enriched mantle, followed by protracted differentiation in the shallow crust. However, additional petrogenetic processes such as magma mixing, crustal melting, and contamination have been identified at numerous peralkaline centers. The onset of peralkalinity leads to magma viscosities lower than those typical for metaluminous felsic magmas, which has profound implications for processes such as crystal settling. This study represents a compilation of published and original data which demonstrates trends that suggest that the peralkaline magmas of the Atlantic Ocean islands are generated primarily via extended (up to ∼ 95%), open system fractional crystallization of mantle-derived mafic magmas. Crustal assimilation is likely to become more significant as the system matures and fusible material accumulates in the crust. Magma mixing may occur between various compositional end-members and may be recognized via hybridized intermediate magmas. The peralkaline magmas are hydrous, and frequently zoned in composition, temperature, and/or water content. They are typically stored in shallow crustal magma reservoirs (∼ 2–5 km), maintained by mafic replenishment. Low melt viscosities (1 × 101.77 to 1 × 104.77 Pa s) facilitate two-phase flow, promoting the formation of alkali-feldspar crystal mush. This mush may then contribute melt to an overlying melt lens via filter pressing or partial melting. We utilize a three-stage model to account for the establishment, development, and termination of peralkaline magmatism in the ocean island magmatic systems of the Atlantic. We suggest that the overall control on peralkaline magmatism in the Atlantic is magma flux rate, which controls the stability of upper crustal magma reservoirs. The abundance of peralkaline magmas in the Atlantic suggests that their development must be a common, but not inevitable, stage in the evolution of ocean islands
Characterization of Selective TRPM8 Ligands and their Structure Activity Response (S.A.R.) Relationship
PURPOSE: Transient receptor potential melastatin-8 (TRPM8) is an ion channel expressed extensively in sensory nerves, human prostate and overexpressed in a variety of cancers including prostate, breast, lung, colon and skin melanomas. It is activated by innoxious cooling and chemical stimuli. TRPM8 activation by cooling or chemical agonists is reported to induce profound analgesia in neuropathic pain conditions. Known TRPM8 agonists like menthol and icilin cross-activate other thermo-TRP channels like TRPV3 and TRPA1 and mutually inhibit TRPM8. This limits the usefulness of menthol and icilin as TRPM8 ligands. Consequently, the identification of selective and potent ligands for TRPM8 is of high relevance both in basic research and for therapeutic applications. In the present investigation, a group of menthol derivates was characterized. These ligands are selective and potent agonists of TRPM8. Interestingly they do not activate other thermo-TRPs like TRPA1, TRPV1, TRPV2, TRPV3 and TRPV4. These ion channels are also nociceptors and target of many inflammatory mediators. 
METHODS: Investigations were performed in a recombinant system: Xenopus oocytes microinjected with cRNA of gene of interest were superfused with the test substances after initial responses of known standard agonists. Evoked currents were measured by two-electrode voltage clamp technique. 
RESULTS: The newly characterized ligands possess an up to six-fold higher potency (EC50 in low µM) and an up to two-fold increase in efficacy compared to the parent compound menthol. In addition, it is found that chemical derivatives of menthol like CPS-368, CPS-369, CPS-125, WS-5 and WS-12 are the most selective ligands for TRPM8. The enhanced activity and selectivity seems to be conferred by hexacyclic ring structure present in all ligands as substances like WS-23 which lack this functional group activate TRPM8 with much lower potency (EC50 in mM) and those with pentacyclcic ring structure (furanone compounds) are totally inactive.
CONCLUSION: The new substances activate TRPM8 with a higher potency, efficacy and specificity than menthol and will thus be of importance for the development of pharmacological agents suitable for treatment and diagnosis of certain cancers and as analgesics.

STATEMENT OF NOVELTY: The new compounds have an unmatched specificity for TRPM8 ion channels with additional display of high potency and efficacy. Thus these substances are better pharmacological tools for TRPM8 characterization then known compounds and it is suggested that these menthol-derivates may serve as model substances for the development of TRPM8 ligands.</jats:p
- …