458 research outputs found

    On Improving Automation by Integrating RFID in the Traceability Management of the Agri-Food Sector

    Get PDF
    Traceability is a key factor for the agri-food sector. RFID technology, widely adopted for supply chain management, can be used effectively for the traceability management. In this paper, a framework for the evaluation of a traceability system for the agri-food industry is presented and the automation level in an RFID-based traceability system is analyzed and compared with respect to traditional ones. Internal and external traceability are both considered and formalized, in order to classify different environments, according to their automation level. Traceability systems used in a sample sector are experimentally analyzed, showing that by using RFID technology, agri-food enterprises increase their automation level and also their efficiency, in a sustainable wa

    Probabilistic DCS: An RFID reader-to-reader anti-collision protocol

    Get PDF
    The wide adoption of radio frequency identification (RFID) for applications requiring a large number of tags and readers makes critical the reader-to-reader collision problem. Various anti-collision protocols have been proposed, but the majority require considerable additional resources and costs. Distributed color system (DCS) is a state-of-the-art protocol based on time division, without noteworthy additional requirements. This paper presents the probabilistic DCS (PDCS) reader-to-reader anti-collision protocol which employs probabilistic collision resolution. Differently from previous time division protocols, PDCS allows multichannel transmissions, according to international RFID regulations. A theoretical analysis is provided in order to clearly identify the behavior of the additional parameter representing the probability. The proposed protocol maintains the features of DCS, achieving more efficiency. Theoretical analysis demonstrates that the number of reader-to-reader collisions after a slot change is decreased by over 30%. The simulation analysis validates the theoretical results, and shows that PDCS reaches better performance than state-of-the-art reader-to-reader anti-collision protocol

    An algorithmic and architectural study on Montgomery exponentiation in RNS

    Get PDF
    The modular exponentiation on large numbers is computationally intensive. An effective way for performing this operation consists in using Montgomery exponentiation in the Residue Number System (RNS). This paper presents an algorithmic and architectural study of such exponentiation approach. From the algorithmic point of view, new and state-of-the-art opportunities that come from the reorganization of operations and precomputations are considered. From the architectural perspective, the design opportunities offered by well-known computer arithmetic techniques are studied, with the aim of developing an efficient arithmetic cell architecture. Furthermore, since the use of efficient RNS bases with a low Hamming weight are being considered with ever more interest, four additional cell architectures specifically tailored to these bases are developed and the tradeoff between benefits and drawbacks is carefully explored. An overall comparison among all the considered algorithmic approaches and cell architectures is presented, with the aim of providing the reader with an extensive overview of the Montgomery exponentiation opportunities in RNS

    Identification of a Duffing Oscillator under Different Types of Excitation

    Get PDF
    In many engineering applications the dynamics may significantly be affected by nonlinear effects, which must be accounted for in order to accurately understand and robustly model the dynamics. From a practical point of view, it is very important to solve theinverse problemrelated to system identification and output prediction. In this paper the recently developed Nonlinear Subspace Identification (NSI) method is presented and applied to an oscillator described by the Duffing equation, with different types of excitation including random forces, which are demonstrated to be very suitable for the identification process. The estimates of system parameters are excellent and, as a consequence, the behaviour of the system, including the jump phenomena, is reconstructed to a high level of fidelity. In addition, the possible memory limitations affecting the method are overcome by the development of a novel algorithm, based on a specific computation of the QR factorisation

    Agri-Food Traceability Management using a RFID System with Privacy Protection

    Get PDF
    In this paper an agri-food traceability system based on public key cryptography and Radio Frequency Identification (RFID) technology is proposed. In order to guarantee safety in food, an efficient tracking and tracing system is required. RFID devices allow recording all useful information for traceability directly on the commodity. The security issues are discussed and two different methods based on public cryptography are proposed and evaluated. The first algorithm uses a nested RSA based structure to improve security, while the second also provides authenticity of data. An experimental analysis demonstrated that the proposed system is well suitable on PDAs to

    Estimation of displacement for internet of things applications with kalman filter

    Get PDF
    In the vision of the Internet of Things, an object embedded in the physical world is recognizable and becomes smart by communicating data about itself and by accessing aggregate information from other devices. One of the most useful types of information for interactions among objects regards their movement. Mobile devices can infer their position by exploiting an embedded accelerometer. However, the double integration of the acceleration may not guarantee a reliable estimation of the displacement of the device (i.e., the difference in the new location). In fact, noise and measurement errors dramatically affect the assessment. This paper investigates the benefits and drawbacks of the use of the Kalman filter as a correction technique to achieve more precise estimation of displacement. The approach is evaluated with two accelerometers embedded in commercial devices: A smartphone and a sensor platform. The results show that the technique based on the Kalman filter dramatically reduces the percentage error, in comparison to the assessment made by double integration of the acceleration data; in particular, the precision is improved by up to 72%. At the same time, the computational overhead due to the Kalman filter can be assumed to be negligible in almost all application scenarios

    Tampering in RFID: A Survey on Risks and Defenses

    Get PDF
    RFID is a well-known pervasive technology, which provides promising opportunities for the implementation of new services and for the improvement of traditional ones. However, pervasive environments require strong efforts on all the aspects of information security. Notably, RFID passive tags are exposed to attacks, since strict limitations affect the security techniques for this technology. A critical threat for RFIDbased information systems is represented by data tampering, which corresponds to the malicious alteration of data recorded in the tag memory. The aim of this paper is to describe the characteristics and the effects of data tampering in RFID-based information systems, and to survey the approaches proposed by the research community to protect against it. The most important recent studies on privacy and security for RFID-based systems are examined, and the protection given against tampering is evaluated. This paper provides readers with an exhaustive overview on risks and defenses against data tampering, highlighting RFID weak spots and open issues
    corecore