112 research outputs found

    Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs

    Get PDF
    In order to understand the role of microRNAs (miRNAs) in vascular physiopathology, we took advantage of deep-sequencing techniques to accurately and comprehensively profile the entire miRNA population expressed by endothelial cells exposed to hypoxia. SOLiD sequencing of small RNAs derived from human umbilical vein endothelial cells (HUVECs) exposed to 1% O or normoxia for 24 h yielded more than 22 million reads per library. A customized bioinformatic pipeline identified more than 400 annotated microRNA/ microRNA*species with a broad abundance range: miR-21 and miR-126 totaled almost 40% of all miRNAs. A complex repertoire of isomiRs was found, displaying also 5′ variations, potentially affecting target recognition. Highstringency bioinformatic analysis identified microRNA candidates, whose predicted pre-miRNAs folded into a stable hairpin. Validation of a subset by qPCR identified 18 high-confidence novel miRNAs as detectable in independent HUVEC cultures and associated to the RISC complex. The expression of two novel miRNAs was significantly down-modulated by hypoxia, while miR- 210 was significantly induced. Gene ontology analysis of their predicted targets revealed a significant association to hypoxiainducible factor signaling, cardiovascular diseases, and cancer. Overexpression of the novel miRNAs in hypoxic endothelial cells affected cell growth and confirmed the biological relevance of their down-modulation. In conclusion, deep-sequencing accurately profiled known, variant, and novel microRNAs expressed by endothelial cells in normoxia and hypoxia

    Identification of novel vascular targets in lung cancer

    Get PDF
    Background: Lung cancer remains the leading cause of cancer-related death, largely owing to the lack of effective treatments. A tumour vascular targeting strategy presents an attractive alternative; however, the molecular signature of the vasculature in lung cancer is poorly explored. This work aimed to identify novel tumour vascular targets in lung cancer. Methods: Enzymatic digestion of fresh tissue followed by endothelial capture with Ulex lectin-coated magnetic beads was used to isolate the endothelium from fresh tumour specimens of lung cancer patients. Endothelial isolates from the healthy and tumour lung tissue were subjected to whole human genome expression profiling using microarray technology. Results: Bioinformatics analysis identified tumour endothelial expression of angiogenic factors, matrix metalloproteases and cellsurface transmembrane proteins. Predicted novel tumour vascular targets were verified by RNA-seq, quantitative real-time PCR analysis and immunohistochemistry. Further detailed expression profiling of STEAP1 on 82 lung cancer patients confirmed STEAP1 as a novel target in the tumour vasculature. Functional analysis of STEAP1 using siRNA silencing implicates a role in endothelial cell migration and tube formation. Conclusions: The identification of cell-surface tumour endothelial markers in lung is of interest in therapeutic antibody and vaccine development

    Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae

    Get PDF
    The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L−1) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators

    The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease

    Get PDF
    The popularization of genome-wide analyses and RNA sequencing led to the discovery that a large part of the human genome, while effectively transcribed, does not encode proteins. Long non-coding RNAs have emerged as critical regulators of gene expression in both normal and disease states. Studies of long non-coding RNAs expressed in the heart, in combination with gene association studies, revealed that these molecules are regulated during cardiovascular development and disease. Some long non-coding RNAs have been functionally implicated in cardiac pathophysiology and constitute potential therapeutic targets. Here, we review the current knowledge of the function of long non-coding RNAs in the cardiovascular system, with an emphasis on cardiovascular development and biology, focusing on hypertension, coronary artery disease, myocardial infarction, ischemia, and heart failure. We discuss potential therapeutic implications and the challenges of long non-coding RNA research, with directions for future research and translational focus. Keywords: transcriptomics, RNAs, long non-coding RNAs, cardiovascular system, cardiovascular development, cardiovascular disease, vascular disease, therapy, non-coding RNA

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    ROD1 is a seedless target gene of hypoxia-induced miR-210.

    Get PDF
    Most metazoan microRNA (miRNA) target sites have perfect pairing to the "seed" sequence, a highly conserved region centering on miRNA nucleotides 2-7. Thus, complementarity to this region is a necessary requirement for target prediction algorithms. However, also non-canonical miRNA binding can confer target regulation. Here, we identified a seedless target of miR-210, a master miRNA of the hypoxic response. We analyzed 20 genes that were inversely correlated to miR-210 expression and did not display any complementarity with miR-210 seed sequence. We validated ROD1 (Regulator of Differentiation 1, also named PTBP3, Polypyrimidine Tract Binding protein 3) as a miR-210 seedless transcript enriched in miR-210-containing RNA-induced silencing complexes. ROD1 was not indirectly targeted by a miR-210-induced miRNA. Conversely, we identified a "centered" miR-210 binding site in ROD1 involving 10 consecutive bases in the central portion of miR-210. Reporter assays showed that miR-210 inhibited ROD1 by the direct binding to this sequence, demonstrating that ROD1 is a bona fide seedless target of miR-210. As expected, both ROD1 mRNA and protein were down-modulated upon hypoxia in a miR-210 dependent manner. ROD1 targeting by miR-210 was biologically significant: the rescue of ROD1 inhibition significantly increased hypoxia-induced cell death. These data highlight the importance of ROD1 regulation by miR-210 for cell homeostasis

    Dysregulation of MicroRNA biogenesis in diabetic skin

    No full text
    Clinical skin manifestations are common in diabetes, often being the first sign of the metabolic disorder. Molecular mechanisms underlying such defects are largely unknown. We investigated whether microRNAs (miRNAs), small non coding RNAs regulating gene expression at post-transcriptional level and playing a role in skin homeostasis, are differentially expressed in diabetic and non-diabetic skin. miRNA profiling by microarray analysis was performed on RNA extracted from the skin of streptozotocin-induced diabetic mice, a model of type I diabetes. More than 400 different mouse miRNA species were identified; expression analysis revealed a general downmodulation in diabetic skin. In detail, among the 30 most significantly modulated miRNAs, 27 were downregulated and 3 were upregulated in diabetic mice. Pathway analysis using Tarbase showed an enrichment of signature-miRNA target genes related to TGF-beta and Wnt signaling. We investigated whether miRNA alteration in diabetic skin associates with changes in the expression of genes involved in miRNA biogenesis. Dicer1, DCGR8, Drosha, Exportin 5, and Ago2 were analyzed by real time-PCR; all, but Ago2, were expressed at significantly lower levels in the skin of diabetic mice compared to non-diabetic controls. Reduction in selected miRNA expression levels and in miRNA biogenesis genes was confirmed in RNA extracted from the skin of db/db mice, a model of type 2 diabetes, in which also Ago2 was significantly reduced. In vitro experiments with human dermal fibroblasts showed that hypoxia (250 mM CoCl2 or 1% O2, for 24 hours), but not hyperglycemia (35 mM D-Glucose, for three weeks), induces Dicer and Drosha downregulation. These findings indicate decreased expression of the majority of modulated miRNAs in diabetic skin associated to reduced levels of genes responsible for miRNA biogenesis, and suggest that miRNA dysregulation is linked to the hypoxic condition of diabetic skin
    corecore