108 research outputs found

    Interference with Hemozoin Formation Represents an Important Mechanism of Schistosomicidal Action of Antimalarial Quinoline Methanols

    Get PDF
    Heme is an essential molecule to most living organisms, but once in a free state it exerts toxic effects. Blood-feeding organisms evolved efficient ways to detoxify free heme derived from hemoglobin digestion. A key mechanism present in some hematophagous organisms consists of the crystallization of heme into a pigment named hemozoin. Schistosoma mansoni is one of the etiologic agents of human schistosomiasis, a parasitic disease that affects over 200 million people in tropical and subtropical areas. Hemozoin formation represents the main heme detoxification pathway in S. mansoni. Here, we report that the antimalarial quinoline methanols quinine and quinidine exert schistosomicidal effects notably due to their capacity to interfere with hemozoin formation. When quinine or quinidine were administered intraperitoneally during seven days to S. mansoni-infected mice (75 mg/kg/day), both worm and eggs burden were significantly reduced. Interestingly, hemozoin content in female worms was drastically affected after treatment with either compound. We also found that quinine caused important changes in the cellular organization of worm gastrodermis and increased expression of genes related to musculature, protein synthesis and repair mechanisms. Together, our results indicate that interference with hemozoin formation is a valid chemotherapeutic target for development of new schistosomicidal agents

    Pirfenidone in idiopathic pulmonary fibrosis:expert panel discussion on the management of drug-related adverse events

    Get PDF
    Pirfenidone is currently the only approved therapy for idiopathic pulmonary fibrosis, following studies demonstrating that treatment reduces the decline in lung function and improves progression-free survival. Although generally well tolerated, a minority of patients discontinue therapy due to gastrointestinal and skin-related adverse events (AEs). This review summarizes recommendations based on existing guidelines, research evidence, and consensus opinions of expert authors, with the aim of providing practicing physicians with the specific clinical information needed to educate the patient and better manage pirfenidone-related AEs with continued pirfenidone treatment. The main recommendations to help prevent and/or mitigate gastrointestinal and skin-related AEs include taking pirfenidone during (or after) a meal, avoiding sun exposure, wearing protective clothing, and applying a broad-spectrum sunscreen with high ultraviolet (UV) A and UVB protection. These measures can help optimize AE management, which is key to maintaining patients on an optimal treatment dose.Correction in: Advances in Therapy, Volume 31, Issue 5, pp 575-576 , doi: 10.1007/s12325-014-0118-8</p

    Visuospatial working memory in children and adolescents with 22q11.2 deletion syndrome; an fMRI study

    Get PDF
    22q11.2 deletion syndrome (22q11DS) is a genetic disorder associated with a microdeletion of chromosome 22q11. In addition to high rates of neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder, children with 22q11DS have a specific neuropsychological profile with particular deficits in visuospatial and working memory. However, the neurobiological substrate underlying these deficits is poorly understood. We investigated brain function during a visuospatial working memory (SWM) task in eight children with 22q11DS and 13 healthy controls, using fMRI. Both groups showed task-related activation in dorsolateral prefrontal cortex (DLPFC) and bilateral parietal association cortices. Controls activated parietal and occipital regions significantly more than those with 22q11DS but there was no significant between-group difference in DLPFC. In addition, while controls had a significant age-related increase in the activation of posterior brain regions and an age-related decrease in anterior regions, the 22q11DS children showed the opposite pattern. Genetically determined differences in the development of specific brain systems may underpin the cognitive deficits in 22q11DS, and may contribute to the later development of neuropsychiatric disorders

    Laboratories, laws, and the career of a commodity

    Get PDF
    Unlike most foods, milk is produced fresh at least twice every day, thus recreating, over 700 times a year, a commodity ‘designed’ by the combination of nature, commerce, and law. The paper is a study of the ontogenesis of this commodity in Britain since 1800, stressing the emergence of two new objectivities: dairy science and the law on adulteration. In the words of Christopher Hamlin, what mattered was the “manufacture of certainty, however flimsy that certainty might later be shown to be.'' This was achieved by the collection of samples, the generation of facts by the deployment of the laboratory technologies of physics and chemistry, and a semimonopoly over the truth-power of dairy science that was gradually built up by the large commercial companies. A foundation of state-sponsored regulation provided an official legitimation of compositional standards that suited the interests of capital but ignored ‘natural’ variations in quality and often pilloried innocent producers. The public eventually became accustomed to the regulated quality of the milk in its ‘pinta’ and assumed it to be natural. Even the standardization of composition since 1993 has caused very little disquiet among the consuming public, although milk is now a fully constructed commodity like any other dairy product. Mechanical modernity has at last triumphed over a century of ‘milk as it came from the cow’

    A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis

    Get PDF
    Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits for construction of a biofilm matrix. The secretion of bacterial functional amyloid requires a bespoke outer-membrane protein channel through which unfolded amyloid substrates are translocated. Here, we combine X-ray crystallography, native mass spectrometry, single-channel electrical recording, molecular simulations and circular dichroism measurements to provide high-resolution structural insight into the functional amyloid transporter from Pseudomonas, FapF. FapF forms a trimer of gated β-barrel channels in which opening is regulated by a helical plug connected to an extended coil-coiled platform spanning the bacterial periplasm. Although FapF represents a unique type of secretion system, it shares mechanistic features with a diverse range of peptide translocation systems. Our findings highlight alternative strategies for handling and export of amyloid protein sequences

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    AMPK in Pathogens

    Get PDF
    During host–pathogen interactions, a complex web of events is crucial for the outcome of infection. Pathogen recognition triggers powerful cellular signaling events that is translated into the induction and maintenance of innate and adaptive host immunity against infection. In opposition, pathogens employ active mechanisms to manipulate host cell regulatory pathways toward their proliferation and survival. Among these, subversion of host cell energy metabolism by pathogens is currently recognized to play an important role in microbial growth and persistence. Extensive studies have documented the role of AMP-activated protein kinase (AMPK) signaling, a central cellular hub involved in the regulation of energy homeostasis, in host–pathogen interactions. Here, we highlight the most recent advances detailing how pathogens hijack cellular metabolism by suppressing or increasing the activity of the host energy sensor AMPK. We also address the role of lower eukaryote AMPK orthologues in the adaptive process to the host microenvironment and their contribution for pathogen survival, differentiation, and growth. Finally, we review the effects of pharmacological or genetic AMPK modulation on pathogen growth and persistence.CIHR -Canadian Institutes of Health Researc

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore