108 research outputs found

    Idiosyncratic evolution of maternal effects in response to juvenile malnutrition in Drosophila.

    Get PDF
    Maternal effects often affect fitness traits, but there is little experimental evidence pertaining to their contribution to response to selection imposed by novel environments. We studied the evolution of maternal effects in Drosophila populations selected for tolerance to chronic larval malnutrition. To this end, we performed pairwise reciprocal F1 crosses between six selected (malnutrition tolerant) populations and six unselected control populations and assessed the effect of cross direction on larval growth and developmental rate, adult weight and egg-to-adult viability expressed under the malnutrition regime. Each pair of reciprocal crosses revealed large maternal effects (possibly including cytoplasmic genetic effects) on at least one trait, but the magnitude, sign and which traits were affected varied among populations. Thus, maternal effects contributed significantly to the response to selection imposed by the malnutrition regime, but these changes were idiosyncratic, suggesting a rugged adaptive landscape. Furthermore, although the selected populations evolved both faster growth and higher viability, the maternal effects on growth rate and viability were negatively correlated across populations. Thus, genes mediating maternal effects can evolve to partially counteract the response to selection mediated by the effects of alleles on their own carriers' phenotype, and maternal effects may contribute to evolutionary trade-offs between components of offspring fitness

    Plastic and evolutionary responses of cell size and number to larval malnutrition in Drosophila melanogaster.

    Get PDF
    Both development and evolution under chronic malnutrition lead to reduced adult size in Drosophila. We studied the contribution of changes in size vs. number of epidermal cells to plastic and evolutionary reduction of wing size in response to poor larval food. We used flies from six populations selected for tolerance to larval malnutrition and from six unselected control populations, raised either under standard conditions or under larval malnutrition. In the control populations, phenotypic plasticity of wing size was mediated by both cell size and cell number. In contrast, evolutionary change in wing size, which was only observed as a correlated response expressed on standard food, was mediated entirely by reduction in cell number. Plasticity of cell number had been lost in the selected populations, and cell number did not differ between the sexes despite males having smaller wings. Results of this and other experimental evolution studies are consistent with the hypothesis that alleles which increase body size through prolonged growth affect wing size mostly via cell number, whereas alleles which increase size through higher growth rate do so via cell size

    Experimental evolution demonstrates evolvability of preferential nutrient allocation to competing traits in response to chronic malnutrition.

    Get PDF
    Investigating the evolutionary origins of disease vulnerability is an important aspect of evolutionary medicine that strongly complements our current understanding on proximate causes of disease. Life history trade-offs mediated through evolutionary changes in resource allocation strategies could be one possible explanation to why suboptimal traits that leave bodies vulnerable to disease exist. For example, Drosophila melanogaster populations experimentally evolved to tolerate chronic larval malnutrition succumb to intestinal infection despite eliciting a competent immune response, owing to the loss of their intestinal integrity. Here, I test if evolved changes in resource allocation underlies this trade-off, by assaying preferential allocation of dietary protein towards growth and tissue repair in the same populations. Using two phenotypic traits: regeneration of intestinal epithelium post-pathogenic infection and body weight, I show that in accordance to the dynamic energy budget theory (DEB) dietary protein acquired during the larval phase is allocated to both growth and adult tissue repair. Furthermore, by altering the ratio of protein and carbohydrates in the larval diets I demonstrate that in comparison to the control populations, the evolved (selected) populations differ in their protein allocation strategy towards these two traits. While the control populations stored away excess protein for tissue repair, the selected populations invested it towards immediate increase in body weight rather than towards an unanticipated tissue damage. Thus, I show how macronutrient availability and their allocation between traits can alter resistance, and provide empirical evidence that supports the 'mismatch hypothesis', wherein vulnerability to disease is proposed to stem from the differences between ancestral and current environment. This article is protected by copyright. All rights reserved

    Prepupal Building Behavior in Drosophila melanogaster and Its Evolution under Resource and Time Constraints.

    Get PDF
    Structures built by animals are a widespread and ecologically important 'extended phenotype'. While its taxonomic diversity has been well described, factors affecting short-term evolution of building behavior within a species have received little experimental attention. Here we describe how, given the opportunity, wandering Drosophila melanogaster larvae often build long tunnels in agar substrates and embed their pupae within them. These embedded larvae are characterized by a longer egg-to-pupariation developmental time than larvae that pupate on the surface. Assuming that such building behaviors are likely to be energetically costly and/or time consuming, we hypothesized that they should evolve to be less pronounced under resource or time limitation. In accord with this prediction, larvae from populations evolved for 160 generations under a regime that combines larval malnutrition with limited developmental time dug shorter tunnels than larvae from control unselected populations. However, the proportion of larvae that embedded before pupation did not differ between the malnutrition-adapted and control populations, suggesting that tunnel length and likelihood of embedding before pupation are controlled by different genetic loci. The behaviors exhibited by wandering larvae of Drosophila melanogaster prior to pupation offer a model system to study evolution of animal building behaviors because the tunneling and embedding phenotypes are simple, facultative and highly variable

    Gut physiology mediates a trade-off between adaptation to malnutrition and susceptibility to food-borne pathogens.

    Get PDF
    The animal gut plays a central role in tackling two common ecological challenges, nutrient shortage and food-borne parasites, the former by efficient digestion and nutrient absorption, the latter by acting as an immune organ and a barrier. It remains unknown whether these functions can be independently optimised by evolution, or whether they interfere with each other. We report that Drosophila melanogaster populations adapted during 160 generations of experimental evolution to chronic larval malnutrition became more susceptible to intestinal infection with the opportunistic bacterial pathogen Pseudomonas entomophila. However, they do not show suppressed immune response or higher bacterial loads. Rather, their increased susceptibility to P. entomophila is largely mediated by an elevated predisposition to loss of intestinal barrier integrity upon infection. These results may reflect a trade-off between the efficiency of nutrient extraction from poor food and the protective function of the gut, in particular its tolerance to pathogen-induced damage

    Drosophila melanogaster cloak their eggs with pheromones, which prevents cannibalism

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this recordData Availability: All relevant data are within the paper and its Supporting Information files: S1 Data and S2 Data.Oviparous animals across many taxa have evolved diverse strategies that deter egg predation, providing valuable tests of how natural selection mitigates direct fitness loss. Communal egg laying in nonsocial species minimizes egg predation. However, in cannibalistic species, this very behavior facilitates egg predation by conspecifics (cannibalism). Similarly, toxins and aposematic signaling that deter egg predators are often inefficient against resistant conspecifics. Egg cannibalism can be adaptive, wherein cannibals may benefit through reduced competition and added nutrition, but since it reduces Darwinian fitness, the evolution of anticannibalistic strategies is rife. However, such strategies are likely to be nontoxic because deploying toxins against related individuals would reduce inclusive fitness. Here, we report how D. melanogaster use specific hydrocarbons to chemically mask their eggs from cannibal larvae. Using an integrative approach combining behavioral, sensory, and mass spectrometry methods, we demonstrate that maternally provisioned pheromone 7,11-heptacosadiene (7,11-HD) in the eggshell’s wax layer deters egg cannibalism. Furthermore, we show that 7,11-HD is nontoxic, can mask underlying substrates (for example, yeast) when coated upon them, and its detection requires pickpocket 23 (ppk23) gene function. Finally, using light and electron microscopy, we demonstrate how maternal pheromones leak-proof the egg, consequently concealing it from conspecific larvae. Our data suggest that semiochemicals possibly subserve in deceptive functions across taxa, especially when predators rely on chemical cues to forage, and stimulate further research on deceptive strategies mediated through nonvisual sensory modules. This study thus highlights how integrative approaches can illuminate our understanding on the adaptive significance of deceptive defenses and the mechanisms through which they operate.Swiss National Science FoundationEuropean Research CouncilDeutsche ForschungsgemeinschaftBaden Württemberg Stiftung and Zukunftskolleg of the University of Konstan

    Life history consequences of adaptation to larval nutritional stress in Drosophila

    Get PDF
    Many animal species face periods of chronic nutritional stress where the individuals must continue to develop, grow and/or reproduce despite low quantity or quality of food. Here we use experimental evolution to study adaptation to such chronic nutritional stress in six replicate Drosophila melanogaster populations selected for the ability to survive and develop within a limited time on a very poor larval food. In unselected control populations, this poor food resulted in 20% lower egg-to-adult viability, 70% longer egg-to-adult development and 50% lower adult body weight (compared to the standard food on which the flies were normally maintained). The evolutionary changes associated with adaptation to the poor food were assayed by comparing the selected and control lines in a common environment for different traits after 29–64 generations of selection. The selected populations evolved improved egg-to-adult viability and faster development on poor food. Even though the adult dry weight of selected flies when raised on the poor food was lower than that of controls, their average larval growth rate was higher. No differences in proportional pupal lipid content were observed. When raised on the standard food, the selected flies showed the same egg-to-adult viability and the same resistance to larval heat and cold shock as the controls and a slightly shorter developmental time. However, despite only 4% shorter development time, the adults of selected populations raised on the standard food were 13% smaller and showed 20% lower early-life fecundity than the controls, with no differences in lifespan. The selected flies also turned out less tolerant to adult malnutrition. Thus, fruit flies have the genetic potential to adapt to poor larval food, with no detectable loss of larval performance on the standard food. However, adaptation to larval nutritional stress is associated with trade-offs with adult fitness components, including adult tolerance to nutritional stress

    Lack of phenotypic and evolutionary cross-resistance against parasitoids and pathogens in Drosophila melanogaster

    Get PDF
    BackgroundWhen organisms are attacked by multiple natural enemies, the evolution of a resistance mechanism to one natural enemy will be influenced by the degree of cross-resistance to another natural enemy. Cross-resistance can be positive, when a resistance mechanism against one natural enemy also offers resistance to another; or negative, in the form of a trade-off, when an increase in resistance against one natural enemy results in a decrease in resistance against another. Using Drosophila melanogaster, an important model system for the evolution of invertebrate immunity, we test for the existence of cross-resistance against parasites and pathogens, at both a phenotypic and evolutionary level.MethodsWe used a field strain of D. melanogaster to test whether surviving parasitism by the parasitoid Asobara tabida has an effect on the resistance against Beauveria bassiana, an entomopathogenic fungus; and whether infection with the microsporidian Tubulinosema kingi has an effect on the resistance against A. tabida. We used lines selected for increased resistance to A. tabida to test whether increased parasitoid resistance has an effect on resistance against B. bassiana and T. kingi. We used lines selected for increased tolerance against B. bassiana to test whether increased fungal resistance has an effect on resistance against A. tabida.Results/ConclusionsWe found no positive cross-resistance or trade-offs in the resistance to parasites and pathogens. This is an important finding, given the use of D. melanogaster as a model system for the evolution of invertebrate immunity. The lack of any cross-resistance to parasites and pathogens, at both the phenotypic and the evolutionary level, suggests that evolution of resistance against one class of natural enemies is largely independent of evolution of resistance against the other

    Blocking the evolution of insecticide-resistant malaria vectors with a microsporidian

    Get PDF
    Finding a way to block the evolution insecticide resistance would be a major breakthrough for the control of malaria. We suggest that this may be possible by introducing a stress into mosquito populations that restores the sensitivity of genetically resistant mosquitoes and that decreases their longevity when they are not exposed to insecticide. We use a mathematical model to show that, despite the intense selection pressure imposed by insecticides, moderate levels of stress might tip the evolutionary balance between costs and benefits of resistance toward maintaining sensitivity. Our experimental work with the microsporidian parasite Vavraia culicis infecting two lines of resistant mosquitoes and a sensitive line suggests that it may indeed be possible to stress the mosquitoes in the required way. The mortality of resistant mosquitoes 24 h after exposure to the insecticide was up to 8.8 times higher in infected than in uninfected ones; if mosquitoes were not exposed to the insecticide, resistant mosquitoes infected by the microsporidian lived about half as long as uninfected ones and insecticide-sensitive mosquitoes (with or without the parasite). Our results suggest that biopesticides or other insecticides that interfere with the expression of resistance may help to manage insecticide resistance in programs of malaria control
    corecore