165 research outputs found

    A Molecular Code for Identity in the Vomeronasal System

    Get PDF
    SummaryIn social interactions among mammals, individuals are recognized by olfactory cues, but identifying the key signals among thousands of compounds remains a major challenge. To address this need, we developed a new technique, component-activity matching (CAM), to select candidate ligands that “explain” patterns of bioactivity across diverse complex mixtures. Using mouse urine from eight different sexes and strains, we identified 23 components to explain firing rates in seven of eight functional classes of vomeronasal sensory neurons. Focusing on a class of neurons selective for females, we identified a novel family of vomeronasal ligands, steroid carboxylic acids. These ligands accounted for much of the neuronal activity of urine from some female strains, were necessary for normal levels of male investigatory behavior of female scents, and were sufficient to trigger mounting behavior. CAM represents the first step toward an exhaustive characterization of the molecular cues for natural behavior in a mammalian olfactory system

    SuRVoS: Super-Region Volume Segmentation workbench

    Get PDF
    Segmentation of biological volumes is a crucial step needed to fully analyse their scientific content. Not having access to convenient tools with which to segment or annotate the data means many biological volumes remain under-utilised. Automatic segmentation of biological volumes is still a very challenging research field, and current methods usually require a large amount of manually-produced training data to deliver a high-quality segmentation. However, the complex appearance of cellular features and the high variance from one sample to another, along with the time-consuming work of manually labelling complete volumes, makes the required training data very scarce or non-existent. Thus, fully automatic approaches are often infeasible for many practical applications. With the aim of unifying the segmentation power of automatic approaches with the user expertise and ability to manually annotate biological samples, we present a new workbench named SuRVoS (Super-Region Volume Segmentation). Within this software, a volume to be segmented is first partitioned into hierarchical segmentation layers (named Super-Regions) and is then interactively segmented with the user's knowledge input in the form of training annotations. SuRVoS first learns from and then extends user inputs to the rest of the volume, while using Super-Regions for quicker and easier segmentation than when using a voxel grid. These benefits are especially noticeable on noisy, low-dose, biological datasets

    Mass spectrometry imaging of endogenous metabolites in response to doxorubicin in a novel 3D osteosarcoma cell culture model

    Get PDF
    Three‐dimensional (3D) cell culture is a rapidly emerging field which mimics some of the physiological conditions of human tissues. In cancer biology, it is considered a useful tool in predicting in vivo chemotherapy responses compared with conventional two‐dimensional cell culture. We have developed a novel 3D cell culture model of osteosarcoma comprised of aggregated proliferative tumour spheroids, which shows regions of tumour heterogeneity formed by aggregated spheroids of polyclonal tumour cells. Aggregated spheroids show local necrotic and apoptotic regions, and have sizes suitable for the study of spatial distribution of metabolites by mass spectrometry imaging (MSI). We have used this model to perform a proof‐of‐principle study showing a heterogeneous distribution of endogenous metabolites that co‐localise with the necrotic core and apoptotic regions in this model. Cytotoxic chemotherapy (Doxorubicin) responses were significantly attenuated in our 3D cell culture model compared with standard cell culture, as determined by Resazurin assay, despite sufficient doxorubicin diffusion demonstrated by localisation throughout the 3D constructs. Finally, changes to the distribution of endogenous metabolites in response to Doxorubicin were readily detected by MSI. Principle component analysis identified 50 metabolites which differed most in their abundance between treatment groups, and of these, 10 were identified by both in‐software t test and mixed effects ANOVA. Subsequent independent MSI of identified species were consistent with principle component analysis findings. This proof‐of‐principle study shows for the first time that chemotherapy‐induced changes in metabolite abundance and distribution may be determined in 3D cell culture by MSI, highlighting this method as a potentially useful tool in elucidation of chemotherapy responses as an alternative to in vivo testing

    The influence of structure on reactivity in alkene metathesis

    Get PDF
    Abstract Alkene metathesis has grown from a niche technique to a common component of the synthetic organic chemistry toolbox, driven in part by the development of more active catalyst systems, or those optimized for particular purposes. While the range of synthetic chemistry achieved has been exciting, the effects of structure on reactivity have not always been particularly clear, and rarely quantified. Understanding these relationships is important when designing new catalysts, reactions, and syntheses. Here, we examine what is known about the effect of structure on reactivity from two perspectives: the catalyst, and the substrate. The initiation of the precatalyst determines the rate at which active catalyst enters the catalytic cycle; the rate and selectivity of the alkene metathesis reaction is dependent on how the substrate and active catalyst interact. The tools deployed in modern studies of mechanism and structure/activity relationships in alkene metathesis are discussed

    Microscopic structure of the polymer-induced liquid precursor for calcium carbonate

    Get PDF
    Many biomineral crystals form complex non-equilibrium shapes, often via transient amorphous precursors. Also in vitro crystals can be grown with non-equilibrium morphologies, such as thin films or nanorods. In many cases this involves charged polymeric additives that form a polymer-induced liquid precursor (PILP). Here, we investigate the CaCO3 based PILP process with a variety of techniques including cryoTEM and NMR. The initial products are 30–50 nm amorphous calcium carbonate (ACC) nanoparticles with ~2 nm nanoparticulate texture. We show the polymers strongly interact with ACC in the early stages, and become excluded during crystallization, with no liquid–liquid phase separation detected during the process. Our results suggest that “PILP” is actually a polymer-driven assembly of ACC clusters, and that its liquid-like behavior at the macroscopic level is due to the small size and surface properties of the assemblies. We propose that a similar biopolymer-stabilized nanogranular phase may be active in biomineralization

    Traditional and transgenic strategies for controlling tomato-infecting begomoviruses

    Full text link
    • 

    corecore