169 research outputs found

    Development of ruthenium indenylidene olefin metathesis catalysts

    Get PDF

    Latent olefin metathesis catalysts

    Get PDF
    Olefin metathesis is a versatile synthetic tool for the redistribution of alkylidene fragments at carbon-carbon double bonds. This field, and more specifically the development of task-specific, latent catalysts, attracts emerging industrial and academic interest. This tutorial review aims to provide the reader with a concise overview of early breakthroughs and recent key developments in the endeavor to develop latent olefin metathesis catalysts, and to illustrate their use by prominent examples from the literature

    Gemcitabine and oxaliplatin (GEMOX) in gemcitabine refractory advanced pancreatic adenocarcinoma: a phase II study

    Get PDF
    Gemcitabine and oxaliplatin (GEMOX) are active as first-line therapy against advanced pancreatic cancer. This study aims to evaluate the activity and tolerability of this combination in patients refractory to standard gemcitabine (GEM). A total of 33 patients (median age of 57) were included with locally advanced and metastatic evaluable diseases, who had progressed during or following GEM therapy. The GEMOX regimen consisted of 1000 mg m−2 of GEM at a 100-min infusion on day 1, followed on day 2 by 100 mg m−2 of oxaliplatin at a 2-h infusion; a cycle that was given every 2 weeks. All patients received at least one cycle of GEMOX (median 5; range 1–29). Response by 31 evaluable patients was as follows: PR: 7/31(22.6%), s.d. ⩾8 weeks: 11/31(35.5%), s.d. <8 weeks: 1/31(3.2%), PD: 12/31(38.7%). Median duration of response and TTP were 4.5 and 4.2 months, respectively. Median survival was 6 months (range 0.5–21). Clinical benefit response was observed in 17/31 patients (54.8%). Grade III/IV non-neurologic toxicities occurred in 12/33 patients (36.3%), and grade I, II, and III neuropathy in 17(51%), 3(9%), and 4(12%) patients, respectively. GEMOX is a well-tolerated, active regimen that may provide a benefit to patients with advanced pancreatic cancer after progression following standard gemcitabine treatment

    Radiosensitization of hypoxic tumour cells by S-nitroso-N-acetylpenicillamine implicates a bioreductive mechanism of nitric oxide generation

    Get PDF
    The radiosensitizing activity of S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was assessed in a model of non-metabolic hypoxia achieved in an atmosphere of 95% nitrogen–5% carbon dioxide. A 10 min preincubation of hypoxic EMT-6 cells (10 × 106 ml−1) with 0.1 and 1 mM SNAP before radiation resulted in an enhancement ratio of 1.6 and 1.7 respectively. The level of spontaneous NO release, measured by a NO specific microsensor, correlated directly with the concentration of SNAP and was enhanced 50 times in the presence of cells. Dilution of the cell suspension from 10 to 0.1 × 106 ml−1 resulted in a 16-fold decline in NO release, but only a twofold decrease in radiosensitization was observed. Preincubation of hypoxic cells with SNAP for 3 min up to 30 min caused an increasing radiosensitizing effect. Extended preincubation of 100 min led to the loss of radiosensitization although the half-life of SNAP is known to be 4–5 h. Taken together, these observations suggest that SNAP generates NO predominantly by a bioreductive mechanism and that its biological half-life is unlikely to exceed 30 min. The lack of correlation between free NO radical and radiosensitizing activity may reflect a role of intracellular NO adducts which could contribute to radiosensitization as well. © 1999 Cancer Research Campaig

    NF-κB inhibition impairs the radioresponse of hypoxic EMT-6 tumour cells through downregulation of inducible nitric oxide synthase

    Get PDF
    Hypoxic EMT-6 tumour cells displayed a high level of inducible nitric oxide synthase (iNOS) and an increased radiosensitivity after a 16 h exposure to lipopolysaccharide, a known activator of nuclear factor-κB (NF-κB). Both iNOS activation and radioresponse were impaired by the NF-κB inhibitors phenylarsine oxide and lactacystin. Contrasting to other studies, our data show that inhibition of NF-κB may impair the radioresponse of tumour cells through downregulation of iNOS. © 2003 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore