1,142 research outputs found
The variable finesse locking technique
Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way
Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects
In gravitational-wave detection, special emphasis is put onto searches that
focus on cosmic events detected by other types of astrophysical observatories.
The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical
telescopes and neutrino observatories, provide a trigger time for analyzing
gravitational wave data coincident with the event. In certain cases the
expected frequency range, source energetics, directional and progenitor
information is also available. Beyond allowing the recognition of gravitational
waveforms with amplitudes closer to the noise floor of the detector, these
triggered searches should also lead to rich science results even before the
onset of Advanced LIGO. In this paper we provide a broad review of LIGO's
astrophysically triggered searches and the sources they target
Reconstruction of the gravitational wave signal during the Virgo science runs and independent validation with a photon calibrator
The Virgo detector is a kilometer-scale interferometer for gravitational wave
detection located near Pisa (Italy). About 13 months of data were accumulated
during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and
September 2011, with increasing sensitivity.
In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the
gravitational wave strain time series from the detector signals is
described. The standard consistency checks of the reconstruction are discussed
and used to estimate the systematic uncertainties of the signal as a
function of frequency. Finally, an independent setup, the photon calibrator, is
described and used to validate the reconstructed signal and the
associated uncertainties.
The uncertainties of the time series are estimated to be 8% in
amplitude. The uncertainty of the phase of is 50 mrad at 10 Hz with a
frequency dependence following a delay of 8 s at high frequency. A bias
lower than and depending on the sky direction of the GW is
also present.Comment: 35 pages, 16 figures. Accepted by CQ
Gravitational Waves From Known Pulsars: Results From The Initial Detector Era
We present the results of searches for gravitational waves from a large selection of pulsars using data from the most recent science runs (S6, VSR2 and VSR4) of the initial generation of interferometric gravitational wave detectors LIGO (Laser Interferometric Gravitational-wave Observatory) and Virgo. We do not see evidence for gravitational wave emission from any of the targeted sources but produce upper limits on the emission amplitude. We highlight the results from seven young pulsars with large spin-down luminosities. We reach within a factor of five of the canonical spin-down limit for all seven of these, whilst for the Crab and Vela pulsars we further surpass their spin-down limits. We present new or updated limits for 172 other pulsars (including both young and millisecond pulsars). Now that the detectors are undergoing major upgrades, and, for completeness, we bring together all of the most up-to-date results from all pulsars searched for during the operations of the first-generation LIGO, Virgo and GEO600 detectors. This gives a total of 195 pulsars including the most recent results described in this paper.United States National Science FoundationScience and Technology Facilities Council of the United KingdomMax-Planck-SocietyState of Niedersachsen/GermanyAustralian Research CouncilInternational Science Linkages program of the Commonwealth of AustraliaCouncil of Scientific and Industrial Research of IndiaIstituto Nazionale di Fisica Nucleare of ItalySpanish Ministerio de Economia y CompetitividadConselleria d'Economia Hisenda i Innovacio of the Govern de les Illes BalearsNetherlands Organisation for Scientific ResearchPolish Ministry of Science and Higher EducationFOCUS Programme of Foundation for Polish ScienceRoyal SocietyScottish Funding CouncilScottish Universities Physics AllianceNational Aeronautics and Space AdministrationOTKA of HungaryLyon Institute of Origins (LIO)National Research Foundation of KoreaIndustry CanadaProvince of Ontario through the Ministry of Economic Development and InnovationNational Science and Engineering Research Council CanadaCarnegie TrustLeverhulme TrustDavid and Lucile Packard FoundationResearch CorporationAlfred P. Sloan FoundationAstronom
Virgo calibration and reconstruction of the gravitational wave strain during VSR1
Virgo is a kilometer-length interferometer for gravitational waves detection
located near Pisa. Its first science run, VSR1, occured from May to October
2007. The aims of the calibration are to measure the detector sensitivity and
to reconstruct the time series of the gravitational wave strain h(t). The
absolute length calibration is based on an original non-linear reconstruction
of the differential arm length variations in free swinging Michelson
configurations. It uses the laser wavelength as length standard. This method is
used to calibrate the frequency dependent response of the Virgo mirror
actuators and derive the detector in-loop response and sensitivity within ~5%.
The principle of the strain reconstruction is highlighted and the h(t)
systematic errors are estimated. A photon calibrator is used to check the sign
of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz
with systematic errors estimated to 6% in amplitude. The phase error is
estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be
published in Journal of Physics Conference Series (JPCS). Second release:
correct typo
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3
We report on a search for gravitational waves from coalescing compact
binaries using LIGO and Virgo observations between July 7, 2009 and October 20,
2010. We searched for signals from binaries with total mass between 2 and 25
solar masses; this includes binary neutron stars, binary black holes, and
binaries consisting of a black hole and neutron star. The detectors were
sensitive to systems up to 40 Mpc distant for binary neutron stars, and further
for higher mass systems. No gravitational-wave signals were detected. We report
upper limits on the rate of compact binary coalescence as a function of total
mass, including the results from previous LIGO and Virgo observations. The
cumulative 90%-confidence rate upper limits of the binary coalescence of binary
neutron star, neutron star- black hole and binary black hole systems are 1.3 x
10^{-4}, 3.1 x 10^{-5} and 6.4 x 10^{-6} Mpc^{-3}yr^{-1}, respectively. These
upper limits are up to a factor 1.4 lower than previously derived limits. We
also report on results from a blind injection challenge.Comment: 11 pages, 5 figures. For a repository of data used in the
publication, go to:
. Also see the
announcement for this paper on ligo.org at:
<http://www.ligo.org/science/Publication-S6CBCLowMass/index.php
Calibration and sensitivity of the Virgo detector during its second science run
The Virgo detector is a kilometer-length interferometer for gravitational
wave detection located near Pisa (Italy). During its second science run (VSR2)
in 2009, six months of data were accumulated with a sensitivity close to its
design. In this paper, the methods used to determine the parameters for
sensitivity estimation and gravitational wave reconstruction are described. The
main quantities to be calibrated are the frequency response of the mirror
actuation and the sensing of the output power. Focus is also put on their
absolute timing. The monitoring of the calibration data as well as the
parameter estimation with independent techniques are discussed to provide an
estimation of the calibration uncertainties. Finally, the estimation of the
Virgo sensitivity in the frequency-domain is described and typical
sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum
Gravity (CQG), Corrigendum include
Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts
We outline the scientific motivation behind a search for gravitational waves
associated with short gamma ray bursts detected by the InterPlanetary Network
(IPN) during LIGO's fifth science run and Virgo's first science run. The IPN
localisation of short gamma ray bursts is limited to extended error boxes of
different shapes and sizes and a search on these error boxes poses a series of
challenges for data analysis. We will discuss these challenges and outline the
methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on
Gravitational Waves, July 2011, Cardiff, U
Swift follow-up observations of candidate gravitational-wave transient events
We present the first multi-wavelength follow-up observations of two candidate
gravitational-wave (GW) transient events recorded by LIGO and Virgo in their
2009-2010 science run. The events were selected with low latency by the network
of GW detectors and their candidate sky locations were observed by the Swift
observatory. Image transient detection was used to analyze the collected
electromagnetic data, which were found to be consistent with background.
Off-line analysis of the GW data alone has also established that the selected
GW events show no evidence of an astrophysical origin; one of them is
consistent with background and the other one was a test, part of a "blind
injection challenge". With this work we demonstrate the feasibility of rapid
follow-ups of GW transients and establish the sensitivity improvement joint
electromagnetic and GW observations could bring. This is a first step toward an
electromagnetic follow-up program in the regime of routine detections with the
advanced GW instruments expected within this decade. In that regime
multi-wavelength observations will play a significant role in completing the
astrophysical identification of GW sources. We present the methods and results
from this first combined analysis and discuss its implications in terms of
sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25,
published 2012 November 21, in ApJS, 203, 28 (
http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables;
LIGO-P1100038; Science summary at
http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
- …