85 research outputs found

    International Lower Limb Collaborative (INTELLECT) study : a multicentre, international retrospective audit of lower extremity open fractures

    Get PDF

    Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV

    Get PDF
    Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7  fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale

    Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV

    Get PDF
    Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values

    Medicinal and Aromatic Plants

    No full text

    Arbuscular mycorrhizal networks: process and functions. A review

    No full text
    International audienceAn unprecedented, rapid change in environmental conditions is being observed, which invariably overrules the adaptive capacity of land plants. These environmental changes mainly originate from anthropogenic activities, which have aggravated air and soil pollution, acid precipitation, soil degradation, salinity, contamination of natural and agro-ecosystems with heavy metals such as cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), global climate change, etc. The restoration of degraded natural habitats using sustainable, low-input cropping systems with the aim of maximizing yields of crop plants is the need of the hour. Thus, incorporation of the natural roles of beneficial microorganisms in maintaining soil fertility and plant productivity is gaining importance and may be an important approach. Symbiotic association of the majority of crop plants with arbuscular mycorrhizal (AM) fungi plays a central role in many microbiological and ecological processes. In mycorrhizal associations, the fungal partner assists its plant host in phosphorus (P) and nitrogen (N) uptake and also some of the relatively immobile trace elements such as zinc (Zn), copper (Cu) and iron (Fe). AM fungi also benefit plants by increasing water uptake, plant resistance and biocontrol of phytopathogens, adaptation to a variety of environmental stresses such as drought, heat, salinity, heavy metal contamination, production of growth hormones and certain enzymes, and even in the uptake of radioactive elements. The establishment of symbiotic association usually involves mutual recognition and a high degree of coordination at the morphological and physiological level, which requires a continuous cellular and molecular dialogue between both the partners. This has led to the identification of the genes, signal transduction pathways and the chemical structures of components relevant to symbiosis; however, scientific knowledge on the physiology and function of these fungi is still limited. This review unfolds our current knowledge on signals and mechanisms in the development of AM symbiosis; the molecular basis of nutrient exchange between AM fungi and host plants; and the role of AM fungi in water uptake, disease protection, alleviation of various abiotic soil stresses and increasing grain production

    Measurements of azimuthal anisotropy and charged-particle multiplicity in dd++Au collisions at sNN=\sqrt{s_{_{NN}}}=200, 62.4, 39, and 19.6 GeV

    No full text
    International audienceWe present measurements of the elliptic flow (v2) as a function of transverse momentum (pT), pseudorapidity (η), and centrality in d+Au collisions at sNN=200, 62.4, 39, and 19.6 GeV. The beam-energy scan of d+Au collisions provides a testing ground for the onset of flow signatures in small collision systems. We measure a nonzero v2 signal at all four collision energies, which, at midrapidity and low pT, is consistent with predictions from viscous hydrodynamic models. Comparisons with calculations from parton transport models (based on the ampt Monte Carlo generator) show good agreement with the data at midrapidity to forward (d-going) rapidities and low pT. At backward (Au-going) rapidities and pT>1.5GeV/c, the data diverges from ampt calculations of v2 relative to the initial geometry, indicating the possible dominance of nongeometry related correlations, referred to as nonflow. We also present measurements of the charged-particle multiplicity (dNch/dη) as a function of η in central d+Au collisions at the same energies. We find that in d+Au collisions at sNN=200 GeV the v2 scales with dNch/dη over all η in the PHENIX acceptance. At sNN=62.4, and 39 GeV, v2 scales with dNch/dη at midrapidity and forward rapidity, but falls off at backward rapidity. This departure from the dNch/dη scaling may be a further indication of nonflow effects dominating at backward rapidity
    corecore