584 research outputs found

    Enhancement of the Thermal Conductivity in gapped Quantum Spin Chains

    Full text link
    We study mechanism of magnetic energy transport, motivated by recent measurements of the thermal conductivity in low dimensional quantum magnets. We point out a possible mechanism of enhancement of the thermal conductivity in gapped magnetic system, where the magnetic energy transport plays a crucial role. This mechanism gives an interpretation for the recent experiment of CuGeO_3, where the thermal conductivity depends on the crystal direction.Comment: 4 pages, 2 figure

    Gravitational Couplings of Intrinsic Spin

    Get PDF
    The gravitational couplings of intrinsic spin are briefly reviewed. A consequence of the Dirac equation in the exterior gravitational field of a rotating mass is considered in detail, namely, the difference in the energy of a spin-1/2 particle polarized vertically up and down near the surface of a rotating body is Ωsinθ\hbar\Omega\sin\theta. Here θ\theta is the latitude and Ω=2GJ/(c2R3)\Omega = 2GJ/(c^2 R^3), where JJ and RR are, respectively, the angular momentum and radius of the body. It seems that this relativistic quantum gravitational effect could be measurable in the foreseeable future.Comment: LaTeX file, no figures, 16 page

    Helioseismology, solar models and neutrino fluxes

    Get PDF
    We present our results concerning a systematical analysis of helioseismic implications on solar structure and neutrino production. We find Yph=0.2380.259_{ph}=0.238-0.259, Rb/R=0.7080.714R_b/R_\odot=0.708-0.714 and ρb=(0.1850.199)\rho_b=(0.185-0.199) gr/cm3^3. In the interval 0.2<R/R<0.650.2<R/R_\odot<0.65, the quantity U=P/ρU=P/\rho is determined with and accuracy of ±5\pm 5\permille~or better. At the solar center still one has remarkable accuracy, ΔU/U<4\Delta U/U <4%. We compare the predictions of recent solar models (standard and non-standard) with the helioseismic results. By constructing helioseismically constrained solar models, the central solar temperature is found to be T=1.58×107T=1.58 \times 10^7K with a conservatively estimated accuracy of 1.4%, so that the major unceratainty on neutrino fluxes is due to nuclear cross section and not to solar inputs.Comment: 14 pages including 9 figures, LaTex file, espcrc2.sty is needed; to appear in Nucl. Phys. B Proc. Suppl., Proceedings of TAUP97 conference, Laboratori Nazionali del Gran Sasso, September 199

    On pp-index extremal groups

    Full text link
    The question on connection between the structure of a finite group GG and the properties of the indices of elements of GG has been a popular research topic for many years. The pp-index xGp|x^G|_p of an element xx of a group GG is the pp-part of its index xG=G:CG(x)|x^G|=|G:C_G(x)|. The presented short note describes some new results and open problems in this direction, united by the concept of the pp-index of a group element

    Strong damping of phononic heat current by magnetic excitations in SrCu_2(BO_3)_2

    Full text link
    Measurements of the thermal conductivity as a function of temperature and magnetic field in the 2D dimer spin system SrCu2_2(BO3_3)2_2 are presented. In zero magnetic field the thermal conductivity along and perpendicular to the magnetic planes shows a pronounced double-peak structure as a function of temperature. The low-temperature maximum is drastically suppressed with increasing magnetic field. Our quantitative analysis reveals that the heat current is due to phonons and that the double-peak structure arises from pronounced resonant scattering of phonons by magnetic excitations.Comment: a bit more than 4 pages, 2 figures included; minor changes to improve the clarity of the presentatio

    Stratification of the orbit space in gauge theories. The role of nongeneric strata

    Full text link
    Gauge theory is a theory with constraints and, for that reason, the space of physical states is not a manifold but a stratified space (orbifold) with singularities. The classification of strata for smooth (and generalized) connections is reviewed as well as the formulation of the physical space as the zero set of a momentum map. Several important features of nongeneric strata are discussed and new results are presented suggesting an important role for these strata as concentrators of the measure in ground state functionals and as a source of multiple structures in low-lying excitations.Comment: 22 pages Latex, 1 figur

    On recognition of direct powers of finite simple linear groups by spectrum

    Full text link
    The spectrum of a finite group is the set of its element orders. We give an affirmative answer to Problem 20.58(a) from the Kourovka Notebook proving that for every positive integer kk, the kk-th direct power of the simple linear group Ln(2)L_{n}(2) is uniquely determined by its spectrum in the class of finite groups provided nn is a power of 22 greater than or equal to 56k256k^2.Comment: 17 page

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Theory of Two-Dimensional Quantum Heisenberg Antiferromagnets with a Nearly Critical Ground State

    Full text link
    We present the general theory of clean, two-dimensional, quantum Heisenberg antiferromagnets which are close to the zero-temperature quantum transition between ground states with and without long-range N\'{e}el order. For N\'{e}el-ordered states, `nearly-critical' means that the ground state spin-stiffness, ρs\rho_s, satisfies ρsJ\rho_s \ll J, where JJ is the nearest-neighbor exchange constant, while `nearly-critical' quantum-disordered ground states have a energy-gap, Δ\Delta, towards excitations with spin-1, which satisfies ΔJ\Delta \ll J. Under these circumstances, we show that the wavevector/frequency-dependent uniform and staggered spin susceptibilities, and the specific heat, are completely universal functions of just three thermodynamic parameters. Explicit results for the universal scaling functions are obtained by a 1/N1/N expansion on the O(N)O(N) quantum non-linear sigma model, and by Monte Carlo simulations. These calculations lead to a variety of testable predictions for neutron scattering, NMR, and magnetization measurements. Our results are in good agreement with a number of numerical simulations and experiments on undoped and lightly-doped La2δSrδCuO4La_{2-\delta} Sr_{\delta}Cu O_4.Comment: 81 pages, REVTEX 3.0, smaller updated version, YCTP-xxx
    corecore