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Abstract. The gravitational couplings of intrinsic spin are briefly reviewed. A consequence of the
Dirac equation in the exterior gravitational field of a rotating mass is considered in detail, namely,
the difference in the energy of a spin- 1

2 particle polarized vertically up and down near the surface
of a rotating body is h̄� sin θ . Here θ is the latitude and � = 2GJ/(c2R3), where J and R are,
respectively, the angular momentum and radius of the body. It seems that this relativistic quantum
gravitational effect could be measurable in the foreseeable future.

PACS numbers: 0420C, 0365, 0480C

1. Introduction

About 40 years ago, Kobzarev and Okun [1] considered the theoretical possibility that a
nuclear particle may possess a gravitoelectric dipole moment. This would lead to a violation
of the equivalence principle through an interaction of the form Hint = Aσ · g, where A is
an amplitude, σ is the particle spin and g is the gravitational acceleration due to a massive
body such as the Earth. Similar spin-gravitoelectric couplings of the form f (r)σ · r̂ have been
considered by a number of authors in connection with the possible breakdown of parity and
time-reversal invariance in gravitation [2]. Leitner and Okubo used the hyperfine splitting of
the ground state of hydrogen to set an upper limit on the strength of such an interaction [2].
Meanwhile, Dabbs et al [3] studied the freefall of neutrons polarized vertically up and down
in the gravitational field of the Earth and found no splitting in the gravitational acceleration
greater than a few per cent of g. However, a few years later observational evidence was reported
for the gravitoelectric dipole moment of the proton [4]. This was soon shown to be spurious by
the experiments of Vasil’ev [5] and Young [6]. In particular, Young [6] placed an upper limit
of 0.3 Hz on the gravity shift of the proton Larmor frequency in 1969. Finally, a significant
upper limit of 10−4 Hz was placed on a possible shift of the deuteron Larmor frequency due
to the Earth’s gravitational field by Wineland and Ramsey [7] in 1972.

In 1989, the observation of an anomalous difference in the weight of mechanical
gyroscopes rotating vertically upward and downward was reported [8]. Again, the existence
of such a rotor weight change was soon contradicted by subsequent experiments [9].

The observational search for the role of intrinsic spin in the gravitational interaction as well
as the spacetime torsion has continued and many significant experiments have been performed
[10–16]. These experiments have also explored finite-range axion-like interactions, which
could be of the r̂ · σ (‘monopole–dipole’) form as well as a linear combination of σA · σB and
r̂ · σA r̂ · σB (‘dipole–dipole’) form, and have placed useful restrictions on the parameters of
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such interactions. Indeed, the past few decades have witnessed the emergence of extremely
precise measurement techniques [17] that make it possible to detect frequency shifts of the
order of 10−9 Hz, an improvement of five orders of magnitude over what was possible three
decades ago [7].

The aim of the present paper is to discuss the gravitomagnetic coupling of intrinsic spin due
to the fact that according to the standard theory a spinning particle possesses a gravitomagnetic
dipole moment. This moment couples to the gravitomagnetic field of a rotating mass (such
as the Earth) in complete analogy with the −µ · B interaction in electrodynamics. Instead
of treating the Dirac equation in the exterior gravitational field of a rotating mass, a heuristic
derivation of this general interaction is given in sections 2 and 3 on the basis of the gravitational
Larmor theorem. For a spin- 1

2 particle near the surface of the Earth, the effect involves a
frequency shift of the order of 10−14 Hz. Section 4 contains a brief discussion of the prospects
for the measurement of this relativistic quantum gravitational effect.

2. Inertia of intrinsic spin

Imagine an observer in a laboratory on the Earth using Earth-based coordinate axes to describe
the results of measurements. The particles involved in the experiments on the rotating Earth
are waves propagating in inertial spacetime and it is natural to assume that they would keep
their polarization aspects fixed in the underlying inertial frame. As measured by the observer,
however, such intrinsic spin must ‘precess’ in a sense opposite to the sense of rotation of the
Earth. The Hamiltonian associated with such motion would be of the formH = −σ ·Ω, where
Ω is the frequency of rotation of the laboratory frame. The existence of such a Hamiltonian
would show that intrinsic spin has rotational inertia. In quantum mechanics, mass and spin
characterize the irreducible unitary representations of the inhomogeneous Lorentz group. The
inertial properties of mass are well known in classical mechanics through various translational
and rotational acceleration effects. In quantum mechanics, the inertial properties of mass have
been investigated experimentally by a number of authors [18]. It is therefore interesting to
consider the inertial properties of spin [19].

The coupling of intrinsic spin with rotation indicated above may be illustrated by a simple
example. Imagine an observer rotating counterclockwise with uniform frequency � about the
direction of propagation of a plane linearly polarized monochromatic electromagnetic wave
of frequency ω � �. For instance, the observer could be in an Earth-based laboratory and �
would then be the frequency of the proper rotation of the Earth. We neglect gravitational effects
in this section and consider all phenomena in a global inertial frame in Minkowski spacetime.
Let the observer move on a circle of radius r with speed cβ = r� in the (x, y)-plane of the
inertial frame and let the electric field of the wave be given by the real part of

E = E0x̂e−iωt+ikz, (1)

where E0 is a constant amplitude, k = kẑ is the wavevector and ω = ck. From the viewpoint
of the rotating observer, the direction of linear polarization that is fixed in the inertial frame
must drift in a clockwise sense about the direction of propagation, i.e.

E = E0
(
cos�t x̂′ − sin�t ŷ′) e−iωt+ikz, (2)

where x̂′ = x̂ cos�t + ŷ sin�t, ŷ′ = −x̂ sin�t + ŷ cos�t and ẑ′ = ẑ denote the Cartesian
coordinate axes in the rotating frame of the observer. Specifically, the two coordinate systems
are related by a simple rotation such that

x̂ + iŷ = e±i�t
(
x̂′ ± iŷ′). (3)
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The linearly polarized wave (1) is a coherent superposition of a right circularly polarized (RCP)
wave and a left circularly polarized (LCP) wave, i.e.

E = 1
2E0

(
x̂ + iŷ

)
e−iωt+ikz + 1

2E0
(
x̂ − iŷ

)
e−iωt+ikz. (4)

From the viewpoint of the rotating observer, these eigenstates of the radiation field remain
invariant,

E = 1
2E0

(
x̂′ + iŷ′) e−i(ω−�)t+ikz + 1

2E0
(
x̂′ − iŷ′) e−i(ω+�)t+ikz, (5)

except that the frequency of the RCP component is perceived to beω−�, while that of the LCP
wave is perceived to be ω + � with respect to inertial time t . The proper time of the observer
is, however, τ = t/γ , where γ = (

1 − β2
)−1/2

. Thus we find that the proper frequencies
measured by the observer are

ω′ = γ (ω ∓�). (6)

Here the Lorentz factor accounts for time dilation, which is all that should happen according to
the transverse Doppler effect. Instead, we have in (6) the additional ‘angular Doppler terms’
∓� that have the following physical origin: in an RCP (LCP) wave, the electric and magnetic
fields rotate in the positive (negative) sense about the direction of propagation with frequency
ω. Since the observer rotates in the positive sense with frequency �, it perceives the effective
frequency of the RCP (LCP) wave to be ω − � (ω + �). In the JWKB limit, ω → ∞
and the ‘angular Doppler terms’ disappear since ∓�/ω → 0. Our heuristic treatment ignores
certain relativistic corrections that are not essential for the purposes of this discussion. Writing
equation (6) in terms of the photon energy asE′ = γ (E∓ h̄�), we see that the deviation from
the simple transverse Doppler effect is due to the coupling of the spin of a circularly polarized
photon to the rotation of the observer, since a RCP (LCP) photon carries an intrinsic spin
of h̄ (−h̄) along its direction of propagation [20]. These elementary considerations already
contain the basic aspects of the phenomenon of spin–rotation coupling, as can be seen from
the following discussion based on the theory of relativity [21].

The special theory of relativity consists of two main elements: the principle of relativity
(i.e. Lorentz invariance) and the hypothesis of locality. The latter specifies what an accelerated
observer measures by establishing a connection between the accelerated observer and an inertial
observer. Indeed, it requires that an accelerated observer be at each instant locally equivalent
to a momentarily comoving inertial observer. This is a non-trivial axiom since there exist
definite acceleration scales of time and length that are associated with an accelerated observer.
In the case under consideration, for example, the acceleration length of the rotating observer
is L = c/� and the corresponding temporal scale is L/c = �−1. Moreover, an elementary
application of the hypothesis of locality would imply that ω′ = γω by the transverse Doppler
effect, since the connection between the instantaneous inertial frame of the accelerated observer
and our global inertial frame simply results in the standard Doppler and aberration formulae
with a time-dependent velocity cβ(t). On the other hand, it should be clear that to measure
wave characteristics such as the frequency, one must observe at least a few periods of the
oscillations of the wave before a determination of the frequency becomes even possible. In
this way, the curvature of the observer’s worldline would have to be taken into consideration,
and hence the standard Doppler and aberration formulae of relativity theory are valid only
to the extent that the period of the wave T = 2π/ω is negligible compared to �−1, i.e.
�T = 2π�/ω → 0. In view of these remarks, it is therefore natural to apply the locality
axiom only to the electromagnetic field; then, the measured field could be Fourier analysed,
which is a non-local operation, to obtain the frequency and wavevector content of the field
in the accelerated frame. This is indeed the physical basis for the extension of relativistic
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wave equations to accelerated systems; in fact, this extended hypothesis of locality for wave
phenomena is equivalent to the assumption of minimal coupling. Using this approach, one
finds that for ω � �, the standard Doppler and aberration formulae should be modified to

ω′ = γ (ω − cβ · k)− γ Ĥ · Ω, (7)

k′ = k + (γ − 1)(β̂ · k)β̂ − 1

c
γωβ +

1

c
γ (Ĥ · Ω)β, (8)

where Ĥ = ±ck/ω is the unit helicity vector. One can then consider optical interferometry in
a rotating frame that would be based on the spin of the photon in contrast to the Sagnac effect
that is connected to its orbital angular momentum [21].

The general expression for spin–rotation coupling can be written as

E′ = γ (E − h̄M�), (9)

where M is the total (orbital plus spin) ‘magnetic’ quantum number along the axis of rotation;
that is, M = 0,±1,± 2, . . . for a scalar or a vector field, while M ∓ 1

2 = 0,±1,± 2, . . . for a
Dirac field. In the JWKB approximation, equation (9) can be written as E′ = γ (E − Ω · J),
where J = L + S = r × P + S. Thus E′ = γ (E − v · P )− γS · Ω, so that in the absence
of intrinsic spin we recover the classical expression for the energy of a particle as measured
in the rotating frame with v = Ω × r. The energy and momentum of a spinning particle as
measured by an accelerated observer are then

E′ = γ (E − v · P − S · Ω), (10)

P ′ = P + (γ − 1)(P · β̂)β̂ − 1

c
γEβ +

1

c
γ (S · Ω)β, (11)

using the same JWKB approach as in the derivation of equations (7) and (8). It follows that

E′2 − c2P ′2 = m2c4 − 2E(S · Ω) + (S · Ω)2. (12)

These results reduce to the equations appropriate for light once we setE = h̄ω,P = h̄k,S =
h̄Ĥ and m = 0.

Experimental evidence for helicity–rotation coupling exists in the microwave and optical
regimes via the phenomenon of frequency shift of polarized radiation [19]. Moreover, there is
observational evidence for the coupling of spin- 1

2 particles with the rotation of the Earth [19].
The analogous gravitational coupling of intrinsic spin is considered in the next section.

3. Spin–gravitomagnetic coupling

To extend the physics of spin–rotation coupling to the gravitational field, one must resort to
Einstein’s heuristic principle of equivalence. It is possible to interpret this principle in the
post-Newtonian approximation via the gravitational Larmor theorem [22]. Newton’s law of
gravitation is formally analogous to Coulomb’s law of electricity; therefore, one may describe
Newtonian gravitational effects in terms of a gravitoelectric field. The classical tests of general
relativity are all due to post-Newtonian gravitoelectric corrections. However, any consistent
framework that brings Newtonian gravitation and Lorentz invariance together must of necessity
contain a gravitomagnetic field that would be due to a mass current. A direct measurement of
the gravitomagnetic field of the Earth via the precession of superconducting gyroscopes in a
polar orbit about the Earth is one of the goals of the Stanford gyroscope experiment (GP-B)
planned for 2001.
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In the linear approximation of general relativity, where gravitational effects are treated
as linear perturbations in a global inertial frame in Minkowski spacetime, one can express
the gravitational field equations as Maxwell’s equations for the gravitoelectric field Eg and
the gravitomagnetic field Bg once O(c−4) terms are neglected in the post-Newtonian metric
perturbations [22]. Specifically, we let gµν = ηµν + hµν , where ηµν is the Minkowski metric
and for the linear perturbation hµν we define h̄µν = hµν − 1

2ηµνh
α
α . Then h̄00 = 4φg/c2,

h̄0i = 2Ai
g/c

2 and h̄ij = O(c−4). Here φg(t,x) is the gravitoelectric potential and Ag(t,x) is
the gravitomagnetic vector potential. That is, of the ten effective gravitational potentials h̄µν
in general relativity, we neglect the six spatial potentials h̄ij as these are of O(c−4) for non-
relativistic (astronomical) sources and from the remaining four potentials one can construct
a consistent theory of gravitoelectromagnetism (GEM) in this approximation scheme. Let us
note that h̄0µ = 2c−2(2φg , Ag), so that the Lorentz gauge condition h̄µν,ν = 0 reduces in this
case to

2

c

∂φg

∂t
+ ∇ · Ag = 0. (13)

Thus Aµ = (2φg,Ag) is the effective GEM potential and the spacetime metric is given by

ds2 = −c2

(
1 − 2φg

c2

)
dt2 − 4

c

(
Ag · dx

)
dt +

(
1 +

2φg
c2

)
δij dxi dxj . (14)

The analogy with electrodynamics turns out to be exact, except for the fact that the ratio of the
gravitomagnetic charge to the gravitoelectric charge is two, qB/qE = 2; that is, linear gravity
is a spin-2 field in contrast to the spin-1 character of the electromagnetic field that implies
qB/qE = 1 for the Maxwell theory.

In electrodynamics, Larmor established a theorem regarding the local equivalence of
magnetism and rotation for all charged particles with the same charge-to-mass ratio q/m. In
fact, the electromagnetic field can be locally replaced by an accelerated frame with translational
acceleration aL = −(q/m)E and rotational (Larmor) frequency ωL = qB/(2mc). In
electrodynamics, q/m can be positive, zero or negative; however, the gravitational charge-
to-mass ratio is universal due to the experimentally well tested equivalence of gravitational
and inertial masses. This leads directly to Einstein’s principle of equivalence and hence a
geometric theory of gravitation. Einstein’s heuristic principle of equivalence traditionally
involves the local equivalence of the gravitoelectric field with the translational acceleration of
the ‘Einstein elevator’ in Minkowski spacetime. The interpretation of Einstein’s principle in
terms of the gravitational Larmor theorem would then involve, in addition, the local equivalence
of the gravitomagnetic field with the Larmor rotation of the elevator as well.

Let us consider the exterior field of an almost spherical rotating astronomical body (such
as the Earth) with GEM potentials

φg � GM

r
, Ag � G

c

J × r

r3
, (15)

where M is the mass and J is the angular momentum of the source. These potentials
can be obtained from the electromagnetic analogy by assuming that the source has positive
gravitoelectric charge QE = M and gravitomagnetic charge QB = 2M . The GEM fields are
then

Eg = −∇φg − 1

2c

∂

∂t
Ag, Bg = ∇ × Ag. (16)

The motion of test particles in the gravitational field of a rotating mass can be obtained from
the Lorentz force law if we assume that for a test particle of inertial mass m the gravitational
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charges are negative, i.e. qE = −m and qB = −2m, in order to take due account of the
dominant gravitational attraction between the test particle and the source. It turns out that an
ideal test gyroscope at rest outside the rotating source undergoes gravitomagnetic precession

dS

dt
= ΩP × S (17)

with frequency

ΩP = 1

c
Bg = GJ

c2r3
[3(r̂ · Ĵ)r̂ − Ĵ]. (18)

Imagine now that we replace the gravitomagnetic field by a rotating frame in the neighbourhood
of the gyroscope. As referred to observers at rest in the rotating frame, the motion of
the gyroscope would be the same as before if the observers rotate with Larmor frequency
ωL = −ΩP . This relation is consistent with the Larmor formula ωL = qB/(2mc) once
we set qB = −2m and Bg = cΩP as in equation (18). Thus a consistent and complete
gravitoelectromagnetic formalism can be developed along these lines [22].

In particular, the spin–rotation coupling can be extended to gravitomagnetism via the
Larmor theorem with ωL = −ΩP . That is, the interaction of intrinsic spin with the
gravitomagnetic field is given by the Hamiltonian H = σ · ΩP , since this interaction in
the Larmor frame would beH = −σ ·ωL as described in section 2. Moreover, the Heisenberg
equations of motion for the spin–gravity interaction H = σ · ΩP are formally the same as
equations (17) and (18) for the precession of an ideal test gyroscope.

In classical electrodynamics, the magnetic dipole moment for a particle of mass m and
charge q is given by µ = qS/(2mc), where S is its orbital angular momentum. The energy
associated with the interaction of this magnetic moment with a magnetic field B is −µ · B.
Extending these notions to GEM with qB = −2m, we find that a gravitomagnetic dipole
moment for a gyroscope of spin S is µg = −S/c and the energy of interaction with a
gravitomagnetic field is −µg · Bg = S · ΩP . A further extension of this result to the intrinsic
spin of particles naturally leads to the interaction HamiltonianH = σ ·ΩP . The gravitoelectric
analogue of this interaction has already been discussed in section 1; that is, Hint = −dg · Eg ,
where dg = Aσ would be the hypothetical gravitoelectric dipole moment of a particle [1, 2]
and Eg = −g from (15) and (16).

Let us imagine an experiment in a laboratory near the surface of an astronomical body
(such as the Earth) involving the difference in the energy of a particle of spin σ = sh̄

polarized vertically up and down (i.e. perpendicular to the surface). According to the spin–
gravitomagnetic coupling, the result is

E+ − E− = 2sh̄� sin θ. (19)

Here θ is the geographic latitude (i.e.E+ = E− at the equator) and� is the effective frequency
associated with the gravitomagnetic field

� = 2GJ

c2R3
, (20)

where R is the mean radius of the body. Equation (19) expresses a relativistic quantum
gravitational effect; indeed, one can write h̄� = (2cJ/R3)L2

P , where LP = (h̄G/c3)1/2 is the
Planck length. Let us note that for the Earth h̄�E � 2 × 10−29 eV, while near the surface
of Jupiter h̄�J � 10−27 eV; similarly, for the Sun h̄�S ∼ 10−27 eV, but for a neutron star
h̄�NS ∼ 10−14 eV.

It is important to point out that the spin–rotation–gravity coupling has appeared in the work
of many authors who have studied wave equations in accelerated systems and gravitational
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fields [23, 24]. In particular, the σ ·ΩP interaction under scrutiny in this work first appeared in
the work of de Oliveira and Tiomno [23]. The observation of wave phenomena associated with
such couplings was first investigated independently in connection with possible limitations of
the general theory of relativity in [25]. Dynamics in electromagnetic fields can be generated
by the transformation of the momentum via pµ → pµ−(q/c)Aµ, whereAµ = (−φ,A) is the
electromagnetic (EM) potential. The same holds in the GEM case, except that the analogue
of Aµ is (−2φg,Ag). Let us consider, for instance, the motion of electromagnetic waves in
the exterior field of a rotating mass. The effective gravitational charge in this case should
be determined based on the fact that a photon of energy h̄ω in ‘cyclotron’ motion has an
effective inertial mass of h̄ω/c2 and hence the effective GEM charges are qE = −h̄ω/c2 and
qB = −2h̄ω/c2. The eigenvalue problem in gravitomagnetic fields leads to discreteness
properties for the modes reminiscent of the Fock–Darwin–Landau levels in a magnetic
field. Imagine, for instance, the motion of electromagnetic waves in a gravitomagnetic field
characterized by the magnitude of the effective ‘cyclotron’ frequency �c � 2GJ/(c2r3).
It follows from the explicit solution of Maxwell’s equations in this background [25] that
the wavefunctions are proportional to Hermite polynomials. These polynomials vary over a
harmonic characteristic length scale lg that is given by

lg = c

(ω�c)1/2
(21)

for an electromagnetic mode of frequency ω. If in this equation we set h̄ω = mc2 and �c

as the cyclotron frequency in a magnetic field, we recover the magnetic length that is well
known in the discussion of the motion of a charged particle of massm in a magnetic field. It is
interesting to note that the gravitomagnetic acceleration length is given by Lg = c/�c, so that
the gravitomagnetic length (21) is the geometric mean of the reduced wavelength of radiation
-λ and Lg . The gravitomagnetic length lg is essentially the same as the radius of the ‘cyclotron’
orbit for a mode with frequency equal to the ‘cyclotron’ frequency (ω = �c). The eigenvalue
spectrum clearly shows the existence of a gravitomagnetic coupling between the photon spin
and the rotation of the source [25]. One can show that in the eikonal approximation the
gravitational helicity–rotation coupling leads to a differential deflection of polarized radiation,
thus violating the universality of freefall in a gravitational field beyond the geometric optics
limit [22, 25]. That the spin–gravity interaction violates the universality of freefall is already
apparent from H = σ · ΩP , since this Hamiltonian depends only on the spin of the particle
and is independent of its mass.

Imagine, for instance, the scattering of electromagnetic radiation by a black hole (i.e.
pure geometry free of matter). For a Schwarzschild black hole, the scattering amplitude is
independent of the polarization of the incident radiation, hence the polarization properties
of the radiation are preserved in the scattering process. For a Kerr black hole, however, the
scattering amplitude is dependent upon the polarization of the incident radiation. It is possible
to give only rough and partial estimates for the motion of wavepackets in a gravitomagnetic
field [25, 26]. The influence of helicity–rotation coupling on the gravitational deflection of
electromagnetic radiation is rather weak and far below the existing observational upper limits
[27], but could become important in future microlensing experiments with polarized radiation.
To provide useful astrophysical estimates of the resulting polarization-dependent deflection of
radiation, an eikonal approach has been developed for the motion of rays based on equations (7)
and (8), i.e. ω(r,k) = ck± k̂ ·ΩP (r), so that the Einstein deflection is ignored for the sake of
simplicity and only the helicity–rotation coupling is taken into account [22]. In this treatment,
the total differential deflection of positive and negative helicity rays approaching the source
together from asymptotic infinity and travelling to infinity after deflection vanishes in contrast
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to what is expected from the wave treatment; however, it is possible to obtain useful estimates
for radiation originating near the source. For instance, consider radiation originating over a
pole and propagating normal to the rotation axis with an impact parameter D; then, RCP and
LCP waves separate by a total angle of δ ≈ 4 -λGJ/(c3D3) about the average Einstein deflection
angle. A qualitative description of this effect is given in [28]. The gravitomagnetic splitting δ is
small; it amounts to about 1 marcsec for GHz radio waves passing over a pole of a neutron star.
In addition to this splitting, one expects a wavelength-independent gravitomagnetic rotation of
the plane of polarization along a ray, i.e. the Skrotskii effect that is the gravitational analogue
of the Faraday effect [25, 29]. Moreover, the difference in the arrival times of positive and
negative helicity radiation originating near a rotating mass and propagating freely outward
to a distant point is estimated to be T+ − T− = −2 -λGJ · r/(c4r3), where r is the position
vector of the point of origin of the radiation relative to the centre of the rotating source. This
differential time delay due to the different phase speeds of RCP and LCP waves is too small
to be measurable at present [22].

The violation of the universality of freefall is a wave effect, so that it vanishes in the
-λ/Lg → 0 limit. Consider, for instance, a spinning particle in a gravitomagnetic field with the
interaction Hamiltonian H = σ · ΩP . This potential energy is position dependent; therefore,
there exists a gravitomagnetic Stern–Gerlach force F = −∇H acting on the particle that
is independent of mass and hence violates the universality of the gravitational acceleration.
Specifically,

F = 3GJ

c2r4

{
[5(σ · r̂)(Ĵ · r̂)− σ · Ĵ]r̂ − (σ · r̂)Ĵ − (Ĵ · r̂)σ

}
, (22)

so that the weight operator for the particle W = mg − F · r̂ is given by W = mg − 3H/r . If
the spin is polarized vertically up or down in a laboratory near the Earth,

W± = mg ∓ 3s

R
h̄� sin θ, (23)

so that W± = mg(1 ∓ ε), where ε can be expressed as

ε = 6s

(
I

MR2

) (
h̄ω

mc2

)
sin θ. (24)

Here J = Iω, I is the moment of inertia and ω is the proper rotation frequency of the Earth.
For a neutron near the Earth’s surface, h̄ω/(mnc

2) � 5 × 10−29; hence, ε is too small to be
measurable in the foreseeable future. It follows that for polarized materials the relevant ε is
expected to be even smaller. Let us note that ε is directly proportional to h̄ω/(mc2), which can
be expressed as the ratio of the Compton wavelength of the particle (h̄/mc) to the rotational
acceleration length of the observer (c/ω). Indeed, the extended nature of the particle makes it
possible for its intrinsic spin to couple to the spacetime curvature, resulting in a force F that
has an exact analogue in the classical Mathisson–Papapetrou spin-curvature force [22, 28].

Thus far we have discussed the gravitomagnetic spin–rotation coupling in terms of a single
rotating source such as the Earth. However, the universality of the gravitational interaction
implies that the whole mass–energy content of the universe is involved in every physical
experiment via the gravitational interaction. In classical physics, the gravitational force of
the rest of the universe enters only through its gradients, which turn out to be rather small
for experiments in the solar system. The situation is in general different in quantum physics,
however. For instance, in the calculation of the spin–gravity coupling, the gravitomagnetic
field generated by the total mass–energy current must be taken into account. This is a
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difficult problem; however, to obtain some idea of what is involved here we may use the
linear approximation to write the interaction Hamiltonian as

H = G

c2

∑
a

3(ra · Ja)(ra · σ)− r2
a (Ja · σ)

r5
a

, (25)

where the sum is over all astronomical sources and ra = xa − x is the vector of relative
separation between the particle of spin σ at x and the centre of mass of the source a.
Equation (25) can be expressed as H = c(σ · ∂x);g , where

;g = G

c3

∑
a

Ja · ra

r3
a

(26)

is the net dimensionless scalar gravitomagnetic potential defined by Bg = c2∇;g . For a
laboratory experiment near the Earth, it is simple to show that the net contribution due to
the Sun, the Moon and the other planets is negligible. Therefore, to compute ;g one must
investigate the cosmic mass–current distribution. This is a difficult observational problem and
much remains unknown regarding the distribution of angular momentum in the universe. It is
likely that over the largest scales no preferred sense of rotation would be discernible. These
considerations lead one to surmise that near the Earth (or Jupiter) the main contribution to the
Hamiltonian is simply due to the Earth (or Jupiter), though a completely satisfactory resolution
is not available. Conversely, observational data regarding the gravitomagnetic spin–rotation
coupling could in principle set limits on the cosmic mass–current distribution.

4. Discussion

The gravitational coupling of intrinsic spin with rotation has been described in this work
and the consequences of the gravitomagnetic interaction H = σ · ΩP have been pointed
out. In particular, the gravitomagnetic shift in the Larmor frequency of a nuclear particle
has been estimated. Efforts are underway to improve the sensitivity of the measurement of
such frequency shifts by several orders of magnitude. This could potentially make the effect
measurable near the surface of Jupiter [30]. Let us recall that for Jupiter h̄�J � 10−27 eV,
corresponding to a gravitomagnetic Larmor shift of about 3×10−13 Hz. In view of the current
interest in planetary exploration, it appears that the gravitomagnetic coupling of intrinsic spin
with rotation could be measurable in the foreseeable future.
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