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The Wiener-Hopf Formulation of the Penetrable Wedge Problem.
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Abstract In earlier papers the author obtained the semi-analytical solution of the generalized
Wiener-Hopf equations that formulate the diffraction of a plane wave by a dielectric wedge at
normal incidence. This solution permits the separating, recognizing and understanding of the
different components of the dielectric wedge field: reflected and refracted plane waves, surface
waves, lateral waves, diffraction coefficients. This paper considers the general case of a plane
wave impinging on an arbitrary penetrable wedge at skew incidence. Comparing the author’s
previous findings with the skew incident case, no new conceptual and numerical difficulties are
present. However, the involved algebraic manipulations become very cumbersome and to handle
them the author resorted to a MATHEMATICA computer program.

Keywords dielectric wedge, diffraction wedge, Wiener-Hopf technique
1. Introduction

The Wiener-Hopf (WH) technique is avery powerful mathematical tool for solving field
problems. In this technique, these problems are rephrased in terms of functional
equations that involve the Laplace transforms of suitable unknowns (spectra). In the
presence of angular regions, the WH equations (WHE) assume aform we call
Generalized Wiener Hopf equations (GWHE) , (Daniele, 2001). In the case of
impenetrable wedges a transformation (Daniele, 2001; 2003a) reduces the solution of
the GWHE to aclassical factorization problem. Several canonical problems involving
impenetrable wedges admit an exact factorization and consequently an exact solution
(Daniele, 2003a; 2004b). Conversely, regarding penetrable wedges, closed form
solutions of the GWHE are amenable only to very special cases. However, a semi-
analytical solution is always possible. In particular we can resort to the Fredholm
factorization ( Daniele,2004a) which is atechnique that reduces the WHE to the
solution of Fredholm integral equations of second kind (FIE). We experienced that some
expedients, such asthat of deforming the integration line of the Fredholm integral
(Daniele,2004a), make the Fredholm factorization very efficient.

The solution of the GWHE for penetrable wedges has required several years of study
Daniele (2004b, 2005, 2009, 2010, 2011; Daniele& Lombardi,2011). The present work



completes these studies by considering the more general case of a plane wave impinging
on an arbitrary penetrable isotropic wedge at skew incidence.

This paper is organized as follows. Section 2 reports the GWHE of the wedge problem
considered in fig.1. These equations are immediately deduced from general equations
that relatethe spectrafor two different values of the observation angles (Daniele
2001,2003, 2004b, 2005, 2010). For the case of normal incidence, the reduction of the
GWHE equations to suitable FIE has been accomplished in Daniele (2005, 2010, 2011).
The skew incidence requires some modifications that are discussed in section 3.

The numerical solution of the FIE provides accurate representations of the Wiener Hopf

(WH) unknowns only in certain regions of the spectral domain. Since these analytical
elements are not sufficient to obtain the field on the x axis (fig.1), a process of
analytical continuation is necessary. For the normal incidence, the analytical continuation
has been considered in Daniele (2009,11). In this paper, section 4 reports the analytical
continuation in the case of skew incidence. The analytical continuations complete the
determination of the axial spectra of the plus Wiener-Hopf unknowns (the spectrain the
direction ¢ =0 and ¢ =z ). The expressions of the spectrafor every direction ¢ are

reported in section 5. They have been obtained by using the rotating waves theory
(Daniele, 2003b). The paper concludes with three Appendices. Appendix A provides
some details of the deduction of the FIE. Appendix B reports the explicit expressions of
severa functions defined in the paper and Appendix C presents adiscussion of the
compactness of the kernelsinvolved in the FIE.

The involved algebraic manipulations required in thiswork are very cumbersome and to
handle them the techniques described in this paper have been combined in a
MATHEMATICA computer program. This program is reported in Daniele (2009).

For the normal case, to ascertain the validity of the proposed method a comparison with
the very few published data and a study of convergence of the proposed numerical
solution of the FIE have been reported in Daniele (2010,2011) and Daniele & Lombardi
(2011). In particular Daniele& Lombardi (2011) present several test cases that provide the
geometrical Optics (GO) field and the UTD components for the total far field. For the
skew incidence case, asimilar study will be undertaken in a future paper.

2. Thegeneralized Wiener-Hopf equations of the problem

We consider the diffraction problem indicated in fig.1 where the harmonic
electromagnetic fields Eexp(jot)and Hexp(jwt)are present. The penetrable wedge
(regions 3 and 4) has permittivity &, = ¢,¢, and permeability 1, = u, 4, and isimmersed
in the free space (regions 1 and 2) having permittivity ¢ =&, and permeability =y, .
The difficulty of this problem has given rise to many techniques for the solution (Lewin
& Sreenivasiah, 1979; Vasil'ev & Solodukhov, 1974; Rawlins, 1977,1999; Berntsen,
1983; Kim & Ra and Shin, 1991ab; Budaev, 1995; Crosille & Lebeau, 1999; Salem,
Kamel & Osipov, 2006). The WH technique of the penetrable wedge problem
constitutes a method that is based on the solution of suitable GWHE. In this new
approach, by assuming the polar coordinates p,¢,z, the following Laplace transforms

are introduced:



V,. (m.¢) = f: E.(p.0)e"do, |, (n.¢)= I: H, ()" dp
D)
IZ+ (77’(0) = »[O Hz(p1¢)ejnpdpl Vp+(77)§0) = »[0 Ep (p’¢)ejﬂpdp

In definitions (1), the subscript + indicates plus functions, i.e. functions having
convergence half-planes that are upper half-planesin the 7 -plane. We also define minus

functions the functions having convergence half-planes that are lower half-planes in the
n-plane.

To avoid the presence of singularities on the real axis 7, the propagation constant
K, = o\ 1., Will be assumed with a negative (vanishing) imaginary part aso in the

presence of lossless media.
We suppose the presence of an incident plane wave with skew incidence:

EI — E ejTOpCOS((ﬂ*(ﬂo}e*leOZ HI — H ejropcos(§07¢o)e7JQQZ (2)
where E,, H are known quantities, 3 is the angle between the incident direction n;, and
72, k=k,=oue,, a,=kcosp and r,=ksinp=,/k’—-ca’ . For this problem the

GWHE (3)-(10) that relate the Laplace transforms of axial and facial components of the
electromagnetic field arevalid [Daniele,2003a; Daniele 2004b; Daniele 2005].

Fig.1: The dielectric wedge problem
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E=E(n) = JTO —n* withthebranch £(0) =7, & =&,(n,) =+/77 —n,° with the branch
&(0) =7, m=m(y)=-ncos®+Ssin®, m =m(n,)=-n,c0sd, +& Sin®,
n=n(n)=-§cos®—npsin® , n, =n(n)=-£cosd, -7, SN,

Summing (3), (5) and subtracting (7) by (9) we get:
2§Vz+ (77’0) -n S\/z+( m) ip+ iz+ (11)

mdm( m) (12)
wE.

1

28V, (n,-7)=—n, sm(—mﬂ—ldim(—m—
weE,

where:



Sap+ (_C) =a,, (—C,(I)) +a, (_C1 _(D) ’ dab+ (_C) =&, (—C,d)) —a, (_C' _q))
astandsV, | ; b stands z, p; ¢ stands m, m;;

Similar equations can be obtained by subtracting (3), (5) and summing (7), (9);
by subtracting (8) , (10) and summing (4), (6); by summing (8), (10) and subtracting
(4), (6).

By substituting k, with z, and k; with z;, we can once again introduce the

normalizations considered in Daniele (2010). They derive from the factorization of the
scalars £=¢ & .8 =4 &, ,n=nn_,n =n_n, and, for the skew incidence case, yield
four uncoupled systems (i =1,3,5,7):

(')+(77) X(|)+( m) é_ (|+l)+( m) (13)

+

Yoy (1) = X, (= ml)+f11 Xty (M) (14)

The plus functions Y, (7) and the minus functions X, (-m), X(m( m,) are auxiliary

functions. In order to ssimplify the expressions that relate them to the original  W-H
unknowns, it is convenient to introduce the mappings:

1 = —7,COSW = —7, COSW, (15)
In the planes w and w; we get (Daniele,2009):

1
V (w) = —Ecosﬁ(cotwcotﬁsnEY (wW)+2, csc,BY (w)j (16)

V. (W) = - Zcsewsin =Y (w) (17)
4 o
) (w) = 1 cos”™W cscﬂY(W)JrZ cotwcotﬂsm Y(W) (18)
ot 2z, 2D 20
~ 1
I, (w)= cscwsm—Y w 19
W)= 5 Yo (19)
- 1 W, . TW, 5
V . (w,)=—-——cos—2x| —cotw,cot Ssin—2Y,(w,) + Z cscBY,(w, 20
s () =5 2<1>1( oot psin Y, () + 2, csc i oj (20
1 l
W,) = ——CsCw, sn”1y (w 21
V,,. (W) 4 o, > (W) (21)
I (W)= cosZ 4| & csc AV, (W) + Z, cotw;, cot ASin LY (w) | (22)
P 270, 20, 20,
Z,H(W) = 1cscw sin o l\?G(Wl) (23)
1
where Z, = / /”fz Y, (W) =Y, () (i =135,7); Y, (w) =Y. (),



In equations (16)-(23) the spectra V,. (W), I, (w),V,, (W), I . (W), V,,, (W),

IAZ?H— (Wl
V. (W)

) oo (W) =1, (-7, cosw,0) ,\72,,+ (w) =V,, (-7, cosw, ), )

Vp/r+ (Wl) = Vp+ (_Tl COSWl’ ﬂ-)

).V

A

(W), 1., (w;) will be called axial spectraand are defined by:

pr+

A

=V, (-7, cosw,0), I, (w) = I, (-7, cosw,0) V. (W) =V (-7, cosw,0),

Z77+(

w,) =1, (-r,cosw,,x),

o (W) =1 (-7, cosw,, 7).

Equations (16)-(23) reduce the solution of our problem to the evaluation of the spectra
Y (W), Y (w,) . These functions will be obtained from the Fredholm factorization of the
generalized equations (13),(14). Therelevant FIE will be described in the next section.

3. Theevaluation of theunknowns Y, .

The author was able to obtain a closed form solution of the equations (13),(14) only
for very specia cases. Consequently, to obtain a general solution we must resort to
semi-analytical factorization techniques. In particular the reduction of the GWHE to
Fredholm integral equations of second kind (FIE) (Daniele,2004a) isvery powerful. At
normal incidence, the Fredholm factorization was successfully obtained in earlier papers
(Daniele,2009,2010,2011; Daniele& Lombardi,2011). The presence of skew incidence
requires some modifications reported in (Daniele, 2009). For the sake of brevity in this
paper we summarize this procedure and in this section only we report the final form of
the FIE (systems(24) and (25)).

T .
——+ju .
R(u)~tan—2_—P(u) - [ M(u,u)R,(u)du’=n,(u)

V2
-—+ju .
P () ~tan—2_—R(u) - [ M(u,u)Ry(u)du’=n, ()

=Tk ()
M (U) R() + tanzT h, (U) Py (U) + (24)

7 Mgy (W) (U)dU" + [ Mgy (u,u) P (u')du' = 0

-2+ v(u)
N0, (U) Py (U) + tan ZT N,eqq (U) B (U) +

7 M (W) RUIAU + [ My (U U R (U U’ =0



T .
——+ju .
P(U)~ tan—2_— Py(u) ~ | M (u,u)Py(u)du'=ny(u)

T .
-—+ju .
P(U)~tan—2_—PRy(u) - [ M (u,u)Ry(u)du’=ny (1)

-4 jv(u)
Peaa (U) Py (U) + tanZT hua (L) P, (U) + (25)

7 My (UUIRU)AU"+ [ My (U,u) Py (u)du’ =0

~Z 1 jv(u)
hyepp (U) Ry () + tanzT Nyeas (U) By(U) +

7 My (U )R U)dU"+ [ My, (U, u)R(u)du’ =0

In the two uncoupled FIE systems of order four above, eight new unknowns PR (u)
i =1,..,8 have been introduced . They provide the values of \?J. through the equations
(26)-(27). The known functions v(u), M(u,u’), h,(u), h, (), M_.(uu’),
Mos(u,u’),n (u) are defined in Appendix B. In particular the functions M (u,u’),

M_.(uu’) and M. (u,u’)are the kernels of the FIE and the functions n, (u)are
representative of sourceterms.

Y (w) = i“i M (—j(%w+%),u')l3i+l(u')du '+, (w)} (i=1357) (26)

z-O
Via(W) = i [ MEI w4 2) VIRV )av! (i=1357) (27)

In equation (27) thefunctions Q (v) arerelated to the P(u) through the representations:

X0 R(U) QW) A(U)
QW) P(U) QW) - W
S U R L AWl B U SO T
QW) R() QW) R(U)

where theknown matrices T_(v,u) and T (v,u) of order four are defined in
Appendix B.

4. Analytical continuation of the starting axial spectra



The kernels M(u,u’), M (uu’), M (uu’) ae compact operators
(Daniele,2004b,2009). Consequently, as has been shown by dozens of numerical
simulations (Daniele 2009,2011; Daniele& Lombardi,2011), the solution of the FIE is
very efficient and requires a very short execution time. However the solutions of (24) and
(25) provide accurate representations of the analytical functions defined by (26) and
(27) only in the strips - ®<Regw]<d and -d, <Refw]<D, respectively
(Daniele,2010). Since these analytical elements are not sufficient to get the axial spectra
(equations (16)-(23)), a process of anaytical continuation is necessary. For the normal
incidence the analytical continuation has been considered in Daniele (2011). In this
section we extend our procedure at the skew incidence. To accomplish it, firstly we must
eliminate the unknowns X., (i =1,..,8)in the equations (3)-(10). Thistask is considerable

smplified if we rewrite the GWHE in the w and w, planes defined through equations
(15). Inparticular, in the plane w equations (3)-(6) assume the form (Daniele,2009):

—-Z, cosp coszAZ+ W+2Z,sing ) . (W) +sin W\7Z+ (w) =

R R R (29)
—Z,cospecos(wW+ D)l (W+D)+Z sinBl,  (W+D)+sin(w+ D)V, (W+ D)
Z,sinwi,, (W) +cosgcoswV,, (w)—sin 8 \7'0+ (w) = (30)
Z, sin(w+®) faz+(w+ ®) + cos S cos(w+ CI))\7az+ (W+ D) —sin,6’\7ap+ (W+ D)
~Z,cospcosw |, (wW)+Z, sing fp+ (W) —sinwV,, (W) = 1)
~Z,c08 B Cos(W+ @), (W+ D) +Z sin B, (W+ D) —sin(w+ D)WV, (W+ D)
Z,sinwl,, (w)—cosgcoswV,, (w)+sin \7/)+ (w) = @)

Z,sn(w+ @) I, (W+®) - cosfcos(w+ DYV, (W+ D) +sn gV, (W+ D)

bz+ Z+

wherethe facial spectrain the w-plane are defined by:
Ve (W) =V, (=7, cos(W), D) lapip: (W) =1 (=7, coS(W), D)

V.5 (W) =V (-7, c0S(W), 20) , [, (W) =1, (~7, cOS(W), +D)

ap

>

Similarly in the plane w; equations (7)-(10) assume the form:



—Z, COS 3, COSW, Im+(w)+Z sin gl pﬂ(V\ﬁ)—i-Sln A m(W)—

=-Z Cosﬂl COS(W_L + (Dl) I bz+ (Wl + qDl) + Zl sin ﬂl bp+ (W_L + (Dl) + (33)

8w, + DNV, (W, +D,)

Z Sr]\NZI. IZ7r+ (W)+ COSIB]_ COSV\& VAZ;H (V\ﬁ) _gnﬂlvAp7r+ (V\ﬁ) =
= Z, Sin(W +®,) Iy, (W, +P,) + (34)
+c0s S, cos(w, + D,) bz+(V\ﬁ+CD) sing, bp+(V\4+®1)

~Z,cos 3, cosw, | (vv1)+zlsnﬂ1fpm(vv1)—sn WV, (W)=

1 " zr+
=—-Z,c0s B, cos(W, + D))l ,, (W, + D)+ Z,sin B [, (W, + D) + (35)
—sin(Ww +®;)V,,. (W, + ;)

Z,sinw 1., (W) —cosp,cosw, V., (w)+sing, V,_ (w)=
=Zsn(w+o)Il,, | (W, +®,) —cos g, cos(w; + d)l) (W +D)+ (36)

+Snﬁl ap+(V\4.+(D1)

wherethe facial spectrainthe w,-plane are defined by:

Vi (W) =V, (-7,005(W), £0) T, (W) =1, (-7, COS(W), £)
ap,bp+ (\Nl) = V,0+ (_Tl COS(V\&)’ iCD) ’ IAaz,bz+ (Vvl) =1 v+ (_Tl COS(\Nl)1 i@)

From (15) we have

ap+ bp+ (V\ﬁ) ap+, bp+( ) ap+ bp+ (Vvl) ap+ bp+ (W)

(37)
Vaz+ bz+ (W ) az+ bz+ (W) az+ bz+ (V\ﬁ) az+ bz+ (W)
Besides w, and w are related through the equations:
W =G (W), w= gtl(vvl) (38)

where:

CosSW
g,(w) =— arccos( 2

e

] . 0u(w)=—arccos( 4, cosw,)



To take advantage of equations (37), next we substitute w with +w—® in equations
(29)-(32) and w;, with tw, —®, in equations (33)-(36). Inthisway we get sixteen
independent equations that contain the sixteen facia spectra Vi, ,, (zw) , azbz+(+W),
\7a s (EW) fa 0+ (W) . The other unknowns are the axial spectra. All the plus
functions are aways even functions( Daniele, 2003a, 2009, 2011) consequently we have
eight additional equations e (W) =V oy (W), T (W) =Ty (W),
Voo bpr (W) = pbp+( w), ap bp+(W) apbm( w) . By eliminating the sixteen unknowns
azbz+(er) , azbz+(+w) (xw) (£w) inthetotal of the twenty four
equations above,we have at our disposal eight mdependent recursi ve equationsthat relate
the axial spectra VV,, ()., I, (W) V., (W) , [,r. (W), V. (W), T, (W) V., (W), ().

After tedious algebraic manipulations (Daniele, 2009) these equations can be rewritten
as.

ap,bp+ ’ ap bp+

V(W) NV (W+2)
V... () V,, (W+ 2)
A ==H,, [w+®,g,(W+®D)]| . +
I, (w) I, (W+20)
[.(w) |, (W+2D)
(39)
pﬁ+(gt(w+ D)+d))
z;r+(gt (W+ CD) + q)l)
+H,, [W+ @, g, (W+ D)]| .
l,..(g(W+®)+d,)
[ . (g (W+®)+ D)
V. (W) V(G (W + @) + @)
= g 0w ) \f (Gulta + 00N,
I r+ (Wl) (gtl(Wl + CDl) + (D)
[ (W) [, (Gu(W; + D)+ D)
(40)
pﬂ (W, +20,)
z;r+ (Wl + zq)l)
+H22n[gt1(W1 + CDl)! Wl + q)l] "
e (W, +20,)
| e (W +20))

where the known matrices H,, (w,w,), Hp,,(Ww,w), H,,,(W,w), H,, (W, w) have very
cumbersome expressions that are reported in Daniele (2009).

10



The presence of the complicate functions g,(w) and g,,(w,) means that great careis

required to deal with the above equations. However, it has been proved that suitable
iterations of (39) and (40) allow the evaluation of the axial spectrafor every value of w
and w; (Daniele 2009; Daniele& Lombardi,2011).

5. Spectra for every direction ¢

Given the whole axial spectrawe can obtain the spectrafor every direction ¢ by using

the rotating waves (2003b). In the free space we get the following expressions of the

spectrafor every direction - <p <O :

vi(W+ o) +_V2(W— ) 1 (~r, cosw,p) = i (W+9) +_lz(W— )
—-7,9NwW —7,SNW

where the rotating waves v, (w), i,(w),v,(w) =-v,(-w) and i,(w) = —i,(—w) are obtained

V,. (-7, Cosw,p) =

A

in terms of the axial spectra \72+(W) , 1,.(w) by the following equations:
v, (W) = —% k,Sin B(Z, coswcos Bl (W) — Z,sin A1 . (W) +sin(w)V,, (w))

k, SN B(Z, Sinw I, (W) — €0 3 cosWN,, (W) +Sin(BIV, . (w))
27,
Similarly inthewedge (-®, <, <, , ¢, =7 — ¢ ) we get:
Vig (W, + @) + Ve (W, — @) 1 (~7,008W, ) = g (W, + @) + 59 (W, — @)
-7, Sinw, 7, Snw,

il(W) ==

V., (=7, 08w, ) =

where the rotating waves are expressed in terms of the axial spectra \727H (w), IAZ,T+ (w) by
the following equations:
le(Wl) = _VdZ(_Wl) =

= _% k sing,(-Z, cosw, Cosﬂlrm+ (-7 +w)—-2Z,sin ﬂlrpﬂ+ (-7+w)-s n(Wl)VAZﬂ+ (-7 +w))
g1 (Wp) = =gy (W) =

ki SinB(-ZSnwi . (—7 + W)+ cos (W) Cos AV, (-7 + W) + SN B, . (—7 + W)
27,

6. Conclusion

This paper describes the solution of the diffraction problem indicated in fig.1 where a
plane wave impinges on a penetrable wedge at skew incidence angle £ . This solution is
based on the W-H technique and generalizes the solution obtained in Daniele (2010,11) at
the normal incidence. In the skew incidence case, even though the number of the
unknowns doubles, no new conceptual and numerical difficulties are present. However,
the procedure used becomes very heavy. For the sake of brevity, sometimes it has only
been outlined. The Daniele Report (2009) illustrates several details of this work. It is
freely available for download. By using the MATHEMATICA computer program

11



(Daniele ,2009), dozens of diffraction diagrams have been plotted in very short
execution time. They are not reported here.

For p=n/2 (normal incidence), x, =1, H, =0, the validation of the solution obtained
by the W-H techniqgue has been ascertained in severd papers (Daniele
2010,2011,Daniele& Lombardi 2011). In particular in Daniele&Lombardi (2011) four
tests cases were studied in detail. For the skew incidence case new test cases will be
considered in afuture paper.

Appendix A Some details on the Fredholm integral equations

Equation (13) can be reduced to aclassical WH equation (A2) by introducing the
mapping (Daniele 2001,2003a) :

n=-r, cos[9 arccos(—g)} (A1)
T T

Yo (@) = Xy (@) + 222K, (@) (1=1357) (A2)

\To— a’
where Y_(i)+ (@) =Y. (M), X(i)—(a )= Xy (=m)
The similar equation (14) becomes the classical WH equation (A3) by introducing the

mapping 7 = -1, (:os{g arcc:os(—ﬂ }
T

21

Y_(i+1)+ () = X'(i)f () - R X'(Hl)— () (i=1357) (A3)

2 2
VL~

where: Y_(i+l)+ () =Y (1), Xy ()= X(i)+(_n])

Since there are not sources in the interior of the dielectric wedge, the standard procedure
for reducing WHE to FIE (Daniele,2004a, 2005) yieldsthe FIE equation (A4) without
any difficulty:

T, +a
X(i)—(al)_ L

2 2
NI~y

T, +a’ T,ta
1 ta 170 '

> CRR) > X(i+l)—(a1)
oc \/71 - \/2'1 -

1
Jr27rj-|.-°0 a,'-a
1 1

X.(Hl)— () +

(i=1357) (A4)

deg'=0

Conversely, the equation (A2) requires the source contribution to be taken into account.
It yields (Daniele,2009) the not homogeneous FIE (A5):
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T, ta

ﬁiam(aﬂ
L, ta' r,ta ])?. (@)
2 2 2 2 (i+1)-

1 Jw L\/ro—a \/ro—a d

2= a'-a

)z(i)f(a)+

a'=n(a), (1=1357) (A5)

The two uncoupled FIE systems (24) and (25) derive from equations (A4) and (A5)
through algebraic manipulations. In order to obtain this deduction, a very difficult step is

to relate the minus functions )"('(i)_(al) and )?(i)_ () becausethey are defined in the two
different complex planes « and ¢, . For the sake of brevity we omit the details of the

procedure we used. They are reported in Daniele (2005, 2010) for the normal case and in
Daniele (2009) for the general skew case.

The explicit expression of the sourceterm N («) (equation) (A6) requires several steps
that for the skew incidence case are reported in (Daniele, 2009). We get:

—jaE, "

@ ° P, Ro L, tao Ry
=If — !
e e a) ) oo @-a)
ma”sm”%)
ma) = If[p, < 2 — @ Ro , Tota  Re
2 o— a (a_ao) \/Tg—az (a_ao)
(A6)
jaH_”

" _ 9 06 &O To+a RGO
(@) = g, << p— ,(Ol_%)+\/r§_0{2 (a—ao)]

—j4H, CI)sm(’”"@)

R n L, tao Reo

a—-a, (a_ao) \/rj—az (a_ao)

In equations (A6) the MATHEMATICA function If[c,a,b] gives a if the condition
cevaluatesto True, and b if the condition cevaluatesto False.

The expressions of the coefficients R, are given by (Daniele,2009):

(@)= 11, <.

T T T,
=22 (E,+E,), R,=-2j=cot(-2o)E, -E,
Ry =2i 7 (B, +E,), Ry=-2] col(_[2)(E,~E,)

Ry =

_2i " (E _ AL
’ R4o_21®(E0 Eor)cos( 2(1)) (A8)

. TT T TQ
=2jZ(H,+H,), =21 7 cot(ELe\H - H
R50 J ®( o or) RBO J q) ( 2® )( (o] OI')

. TT . TTQ . T 1)
=-2]—(H,+H,)sin(—>), =-2]—(H,—H_)cos(—=
Rio ==2J (Ho+ Ho ) SN %), Ry ==2)(Ho = Hy) cos(— )

13



By supposing ¢, >0, E, and H_ arethe intensity of the plane wave (A9) reflected by
theface &

E; (,0,(0) — EoreircpCOS(fﬂfwr) ’ H;(,O,(D) — Horejrf’pms(ww’) (A9)

with ¢, =20 —-¢,
Similarly E, and H, aretheintensity of the plane wave (A10) transmitted in the wedge
by the face a

E;(p, P) = EmeiﬁpOOS(«ﬂ*%) ’ H;(p,(o) — HOteiflpCOS(f/Hﬂt) (A10)

with ¢, =0 +g,(P—-¢,) and g,(W)= —arccos(ciﬂj :

e

Inordertoget E, ,H, ,E, and H_, we must take into account the equations

(A11),(A12) that relates thetransversal components to the longitudinal components :

i a,q OB (p, Z,, 0H M (p,
Ep,t (p,¢) =— ,21 1 (/0 (0) + 1 (/0 (0) (All)
7o\ ks 0P p 09
; a, 6H;’t : Y, GE;’t ,
Hp,t (p’¢) — ko; 1 (p gﬂ) _ ol (p ¢) (A12)
1701 Kos op P op

By forcing the four boundary conditions on the face a:
E,(p,®)+E,(p,®) =EL(p,®), E (p,®)+EL(p,®)=E(p,D),

H(p,®)+H.(p,®)=H}(0.®), H.(p,®)+H(p,®)=H!(p,®)

we get a system of four equations that provides the evaluation of E,,H, ,E, and H .
The expressions (Daniele,2009) of E, ,H,,E, and H_ are very weighty and not
reported in this paper.

Appendix B.
In the sequel we report the known functions that define the parameters of the two systems

(24) and (25):
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2
£, =L =27 =1+ (s, —1)csc? B

Cos(ﬂ+2j u)o

v(u) = 27| @, - 2arccos 27
20, g,
M(U,u'):i_ € . e|,1-¢-u,-i_J
7 (e” - J) e +1
h,.,,(U) = cosh(u) cscw sech(v(u))sin (7 +2jv(u))D,
2r 27
(7 +2ju)® (7 + 2 jv(u))®,

h.,(u) = COS%(H _2ju)cse SGC%(H _2jv(u))sin

2
ho(U) =2, cos% (7 - 2ju) cos(B)

I, cot (7+2ju)® cos (m+2jv(u))D, s (r+2ju)® Josc? (7 —2]jv(u))
Vd 2r 2r 4

Zg,(j+sinhu)
Z,(j+sinhv(u))

hae33(u) =

hae41(u) = COS(ﬂ) COSh(U) .
(T+2j0)® _ (2P, (r+2j0)@ ) (x=2]v()
T 2r 2r 4
27

(0]

(7=-2jv(u) 4, (7~ 2JU)
4

[&, cot

hu(U) =g, cC

hbe32 (U) =Z Zo ae41(u) hoe33(u) = l hae44(u) hbe41(u) Z 7 ae32(u) ’

(o]

I1)944(u) ae33(u)

1

hoezz(u) haell(u) ’ h‘oell(u) = _hae22(u)

Mo (U,U) = {7 M (V(U), V)T (V000" Mg (U,U) = [ M (W(U), V)T, (', 1)V

s (ju+ %) + @]
T(v,u)=—g2 z 2

27 cos[%(jwr%)+(D]—\/g_"cos[%(jv+%)+¢>l]
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Teg: O 0 0 T, O 0 0

0O T 0 0 0O T 0 0
ae22 ’ Tbe (V, u ) — be22

0 TaeSZ TaeSS O 0 TbeSZ Tbe33 O

Tae4l 0 O Tae44 Tbe4l O O Tbe44

T.(v,u) =

T

ael.

= T(v,u)cosh(u)csc T 2P oy sin P H2IM P
2 2

T :T(v,u)cos%(yz—Zju)csc

ae.

(r+2ju)®
2

sec%(n _2jv)sinEH2IMP, +§J")(Dl

Toca = T(V,U)Z, 087 (7 - 2]u) coS( )

[&, cot (z+2ju)® (Z+2jV)0,  (7+2ju)® Josc? (7-2jv)
T 2r 27 4

Tae33 = T(V, U) Zlgtr (J +.th U)

Z (j+sinhv)
Toear = T(v, ) cos( ) cosh(u)
[&, cot (7 +2ju)® _Cos(fHZJV)CD1 Csc(ﬁ+21u)d>]csc(7z—21v)

27,
7—2jv) . (r—2ju

Tae44 - T(V’ u)g" C$( 4 ) ) sn ( 4 J ) y Tbe22 = Taell! Tbell = _Taezz

Z 1 Z,
Tbe32 = le T, Tbe33 = Z_lTae44 ' Tbe41 = _ETaesz ) Tbe44 = ?Tae33

0 "aedl?
(o] 1=0 1
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) T ju—rz/2
o MR RyRyn
n(u) =~I1f[p, <, —, ~ ]
jsinhu—cos(—¢,) jsinhu—cos(——g,)

D D
. T . T, ju—zl2
AE. = o ~R,tan— "%

_ 9 J oq)sn(zq)) R’SO R4Oan 2
n(u) =-If[p, <—, ]

j sinhu—co z | j sinhu—co z
j S((D(po) j S(CI)%)
ju—zl2
2]
j ssnhu—co z j sinhu—co 4
j S(q)coo) j S((D(po)

. T
) J4H06 Ry, — Reo tan
ng(u) =-If[p, <—,

: . ju—rz/2
o ~14H T SnE) Ry-Rytan HEEE
n, (W) =~If[p, <=, . 2

jsinhu—cos(agoo) jsinhu—cos(agoo)

The explicit expressions of R, as well as of the matrices H,,,(w,w), Hp,, (W,w),

H,,. (w,w), H,, (w,w) are very cumbersome and reported in Appendix H of Daniele
(2009).

Appendix C. Characteristics of the kernels

For the sake of brevity this Appendix only referstothecase: f=x/2, u, =1, H,=0.
In this case system (24) and (25) are of order two since the functions P(u) (i =5,..8) are
vanishing. Moreover aso the functions Q (u) (i =5,..8) are vanishing.

All the kernels present in the FIE (24) and (25) derive from the kernel
M(uu) ==& €t

7T (e“— J) e +1

A property of thiskernel isthat it satisfies the condition:

M(u,u)=M *(-u,—-u"). (C1)
where * means complex conjugation.
Consequently by considering the complex conjugate of the equations (24) and (25) we
obtain that —P_,* (-u) , —Q,,* (-V) are solutions of the problem too.

Since the solution is uniqueit yields:

Pl,z(u) =-B,* (-u) Ql,z(u) =-Q,* (-u). (C2)
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The property ( C2) has been ascertained numerically.

According to the general theory (Daniele,2004a), the kernels of the integral equations
occurring in the Fredholm factorization are compact in a suitable functions space. In this
Appendix thisimportant property will be studied directly in the Hilbert space L,. We
first reduce the infinite interval of integration —o<u<oo into a segment —1< x<1,
through the well known transformation u = u(x) = arctanh(x) ( do not confuse this new

variable x with the geometrical coordinate x of Fig.1). After algebraic manipulations, in
the x—domain (-1< x <1), theintegral equations (24) become:

12 A(X,X') B rundv
B -(j-(1-x) )P(x)——jl(1 L s = N (c3)
! BZr(XX) D ' (.
C,(X)B(X) +C,(X)P,(X) - — Il(l 2y (1 x" )UH.Z(U )ax'=0 (C4)

where, being T(v,u) defined by (B3), we have:

RUY) | 1p pxy - X IA=) - A= x?))

P( )_w’ (1- X )1/2X. (1- X|2)1/2X
e [jv(u(x))d> D, ]
N,(x) = i L C(x) = 7
LY (x+ (1~ 32 cos™ %) (U P ‘;’]
€, = tan _§+ jv(u(x)) cosh(v(u(x))) Z,sin [ (- "‘ ju(x))]

2 cosh(u(x)) 7 gjn? [5(_5 + jv(u(x)))]

B, (x,X) = [ B,(v(u(x),V)R,(u(x), V)V’
cosh(v)e‘'(e" + j)

B,(v.v') = P
(&= )™ +Dsn’[ (=, + V)]
R(U'V) = ‘D—ZZ ST (-2 T (v, )

In the equations (C3) and (C4), the rea parameter 6 has been introduced for
convenience. The range of this parameter has some limitations. For instance we must
have 6 <1/4, otherwise the vector N,(X) ¢ L,. Taking into account the expressions of

P(u), we get:

W]’ =12

Whence 6§ <1/4 yields P(x) e L,, i=12.
Taking into account that as u — oo (or x=41) :
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v(u) zgu_ﬂloggr _ ] z(d-D,)
D, 20, 20,

~(j - @-x%)"%)
C.() C,(%)

(C5)

it follows that the matrix isinvertible for every values of

1 —j
-1<x<+1. Forinstance at x= =1, it becomes 1 jé'
Z

Consequently to verify that the system (C3-C4) is Fredholm of second kind, we must
study thetwo functions A(x,x') and B,, (x,X"). The function A(X,x") is not bounded

in the square —-1<x,x"'<1. However numerical simulations have ascertained that, for
non vanishing positive values of the parameter J,, Max{(l— x'z)ﬁlA(x,x')}< o in the
square —1<x,x"'<1 results. Whence we rewrite the kernel of (C3) in the form:

(1—x"*)2A(X, X")

(1- X2)5+§1 1- X.z)l/ 2-5+5, (Co)

L-x2)%A(x,x) |
Xz)sm‘l (1- )(-2)1/2—5+51

2
Kernel (C6) iscompact in L, if jiji%(l dxdx'<oo. Takinginto

account that the max of ‘(1—x'2)51A(x,x')‘2 is finite in the square —1< x,x'<1, we

easily verify this equation provided thatO< o, < 0 < % . Within the same conditions, also

BZr (X' X')
(1_ X2)5(1_ X|2)1/2—(5

B, () = [ BU(MUR VIR (X))

the kernel

is compact provided that

2
<o —1<xx'<1 (o))

To ascertain (C7) we observe that Max{Bz(v,v')} < oo for every valueof —oo<v,v'<w.
It occurs in the worst case v=-v' too. Furthermore numerical simulations put in
evidence that J‘_w R,(u(x"),v)dv' isfinitefor every -1<x'<1.

Whence, taking into account (C5), equation (C7) holds.
To ascertain the compactness of the kernels involved in system (25) requires a slight
modification of the above proof. In particular the new systemis:

1 A(X, X"

B00 (=X R0~ [ i s OO =N ()
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CL()R(X) +C,(x)P,(x) +
T G A B, (X,X")
7§ 1= X+ jV1+ x 1 (L= X)) (1-x?)
where we have:

(C9)

25 F~)4(u')dxI =0

X'+ J((l— X2)1/2 _ (1_ X|2)1/2)
(1_ X2)l/2Xu_ (1_ X|2)1/2X

S(x) = AUX) N _ (X=
R(x) = (1- X3V L, i=34, A(xX’)

47E, sin(e)
20

N,(X) = ,
9 _2)o C1 V2 A PP
OL-x)’(x+ j(1—x%) cosq))

=7 V(00 00 (<24 VU] ZySinl (= + JU0))]

C,(X)=tan
4 (X) 5

1, = . 1T
cosf (=2 + I Zosin[ (= + V(U(x))]
B, (x,X) = [ By(v(u(x),v)R, (u(x’),v)av'

cos (-7 + ju)e(e” + )

B4(V,V') = ; - " . 1 p -
(e~ i)(e™ +Dsin (=7 + V)]

1 n _ _ ®Zl . l _£ HTL 1 1
R,(u',v) = 27[2209“[2( o FIUNT(V, U]

Taking into account the discussion of the system (C3)-(C4) , the compactness of the
kernels of the system (C8)-(C9) reduces to the compactness of the kernel:

2(-1)" B, (X, X')
\/1_ X + J\/1+ X (1_ X2)l/4+5(1_ X|2)1/2—§
Thiskernel iscompact provided that:
B () = [ B VIR (X))

We observe that Max{B4(v,v')}< o for every vaue of -w<v,v'<oo; furthermore

2
<o —1<xx'<1 (C10)

numerical simulations show that I_w R,(u(x),v)dv'=0[(1-x'*)"*] for every

—1<x'<1.
Whence, taking into account (C5), equation (C10) holds.
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